| AD-A104 090
UNCLASSIFIED | SOUTHWEST
MULTICYLI
JUN 81 C | RESEARCH INSI
NDER DIESEL EN
W COON | SAN AN IGINE TES | ITONIO
ITS WIT | TX
H UNSTA | MBILIZE | D WATER | F/6
-IN-FU-
587 | 13/10
-ETC(U) | ` | |-----------------------------|------------------------------------|---|------------------|-------------------|---------------|---------|---------|-----------------------|------------------|---| | 1 16 2
AUX 090 1 | o | | | | | | | | | | | | | | | | 15/1 | | | | | | | | | | | | Į.Ją | 1-50 LEVEL 12 CG-D-27-80 AD A104090 # MULTICYLINDER DIESEL ENGINE TESTS WITH UNSTABILIZED WATER-IN-FUEL EMULSIONS REPRINT JUNE 1981 U.S. DEPARTMENT OF TRANSPORTATION RESEARCH AND SPECIAL PROGRAMS ADMINISTRATION TRANSPORTATION SYSTEMS CENTER ● CAMBRIDGE MA 02142 PREPARED FOR UNITED STATES COAST GUARD OFFICE OF RESEARCH AND DEVELOPMENT • WASHINGTON DC 20593 REPRINT JUNE 198 81 9 01 059 # NOTICE This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. # NOTICE The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. | بالأ | | 750141 | ICAL DEBORT STA | NOADO TITI E BACE | | | |---|-------------------|---|--|--------------------|--|--| | 1. Report No. | 2. Government Ac | | Recipient's Catalog | NDARD TITLE PAGE | | | | CG-D-27-80 | | ., | | | | | | | AD-A10 | | | | | | | 4. Title and Subtitle | TEL ENGINE ME | 1 | Report Date Reprint Jun | e-19 81 | | | | MULTICYLINDER DIES
UNSTABILIZED WATE | | | Performing Organiza | | | | | ONSTABILIZED WATER | V-IN-LOEF FW | DESTONS 4 | - | gtion code | | | | 7 0 110 110 | | 9 | 11-5477 Performing Organiz | ation Report No. | | | | 7. Author(s) C. W./Coon, Jr | | 8. | - or forming Organiza | ation responding | | | | or / coon, or / | | | DOT-TSC-USCG | -80-7 | | | | 9. Performing Organization Name and Address | i | 10. | Work Unit No. | | | | | Southwest Research Inst: | itute* | | CG 107/R 101 | 4 | | | | 6220 Culebra Road | | 11. | Contract or Grant | 1 0, | | | | San Antonio TX 78284 | | | DOT-TSC-158 | 7 — | | | | | | 13. | Type of Report and | Period Covered | | | | 12. Sponsoring Agency Name and Address | _ | · · · · · · · · · · · · · · · · · · · | <u>F</u> INAL | REP CR T _ | | | | U.S. Department of Trans
U.S. Coast Guard | _ | Sep | tember 1978- | Jul y 19 80 | | | | Office of Research and I
Washington DC 20593 | Development | 14. | Sponsoring Agency G-DMT-3 | Code | | | | 15. Supplementary Notes U. | S. Department | of Transportation | 1 | | | | | | | ecial Programs Adm | | 1 | | | | | | Systems Center (D) | CS-332) | | | | | Ca | mbridge MA (|)2142 | | | | | | 16. Abstract | | | | | | | | Two diesel engines repre | | | | | | | | main propulsion units install | | | | | | | | a test environment in an atte | | | | | | | | with water-in-fuel emulsions laboratory test cell. A prof | | | | | | | | stabilized emulsions for which | | | | | | | | percent of the total volume of | | | | | | | | boat operation was performed | | | | | | | | settings, and both engines we | | | | | | | | load performance. | • | | | | | | | The test results for the | e four-stroke | cycle engine indi | cated that a | n average | | | | diesel fuel saving of about 2 | | | | | | | | encountered operating conditi | | | | | | | | tistical analysis procedures | | | | | | | | Significant reductions in exh | | | | | | | | stream opacity was low through | | | | | | | | statistically significant rec | | | | | | | | Measurements of gaseous general, the emissions increa | | | | | | | | ments of particulate emission | | | | | | | | slight effect of water concer | | | | | | | | associated with the presence | | | | | | | | 17. Key Words | | 18. Distribution Statement | | | | | | | | | A 0. E TO THE DUE | uc. | | | | Diesel engines
Water-in-fuel emulsions | | DOCUMENT IS AVAIL
THROUGH THE NATION | ONAL TECHNICAL | | | | | Fuel consumption | | INFORMATION SERVI | | ì | | | | Exhaust emissions | | VIRGINIA 22161 | | | | | | EMIGROT CHIZOTONIC | r | <u> </u> | F 22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | | | | 19. Security Classif. (of this report) | 20. Security Clas | | 21. No. of Pages | 22. Price | | | | Unclassified | Uncl | assified | 154 | | | | #### PREFACE This work was performed for the U.S. Department of Transportation, U.S. Coast Guard, Office of Research and Development, under a contract issued by the Transportation Systems Center. The Technical Monitors were Fred Weidner (USCG) and Robert Walter (TSC). The laboratory tests were performed by Rodney Bauer of the Department of Engine and Vehicle Research, Southwest Research Institute. Engines were made available to the program by the Cummins Engine Company, Inc., and by the Detroit Diesel Allison Division of General Motors Corporation. The cooperation of these organizations is sincerely appreciated. | Accession For | |----------------------------------| | NTIS GRA&I | | DTIC TAB | | Unannounced [] | | Justification | | Distribution/ Availability Codes | | Myail and/or
Dist Special | | Special | | A | METRIC CONVERSION FACTORS | | į | | • | • | e 1 | Łŧ | | | 7 | · `` | 'n. | | | | * | • | | | 1 | | s i | i 2 | 3 | | | • | | \ | # - |]
} | 1 | |--|---------------|---------------|--------------|------------|--------------|-------------|-----------------------|---------------|-----------------|------------------------|--------------------|---------------------------------|-------------------------------|------------------------|----------------|----------|---------------|-----------|--------------|-------------------|--------------------|--------------|----------------------------|------------|---------------------|---------------|---------------------|------------|----------------|-----------------------|-------------| | etric Measures | . Fi | ŀ | arches | riches | 1 | | | | 1 | | seres aries | 9639 | | Ĺ | | | | | !
[| | Ī | | 1 | | nect) | | | | 150
0\$1 | | | | Appreximate Conversions from Matric Moasures | Maltiphy by | LENGTH | 8 | 7 | 3.3 | 2; | ; | AREA | | #. 6.78
 | 7. | 2.5 1, w. 1 | | MASS (weight | *** | | | | | 8 | • | % | g <u></u> | | TEMPERATURE (onset) | | 1 R | | 2 - S | 12 | | | Approximate Co. | What You Know | • | | Continuite | meters | Ę | L. Homeston | | • | September Construction | | hectores (10,000 m ² | | • | į | | | | • | An Hebitara | į | interes | Cubic meters | | | | Colours | | • | }
*}
* | | | | 24872 | | | ŧ! | Ŝε | • | 5 | | | } - | ر" <u>،</u> | 2 | | | | - 3 | • | | | Ŧ. | | _ | `e ^e | | | | ب | | | | | |

 ES | 22 | | >2 | |
 | lin | | | 91
 | Helli | 83
 | | 111111 | i
Idili | 111111 | Allai | | ot
III | | | | | \

 12 1 013 | , | | HIDA |)
Interdes | | | | | |]
 - | 11711 | | ļ.i. | ' '
 | ' ' ! | `[' | ,
I.Î.I | ']'' | . . 1.1. | | 44 | `[']'

 | .İ.1. | ' '

 | ļ,1, | 'l'
 | 'I'

 | 'l'
• | \\
\
\ | l' ' |]']'

 | ' ' | נ'נ''

 | ' | l' '

 | ' ' | 1.1.1. | ייין. | ''' '

 | ייים

 ני!ו!י! | 1111
Act | | | | į | | | | 5 | 8 € | 5 | | • | | reî | | | | • | 1 . | | | Ē | Ē | i - | | | `£ | è | | ٠ | | | | | Matric Mossures | | 7.
2. | | | | Centimeters | Centimaters
meters | h : lgmeter s | | | Square Cartumeters | Square melers | square kelamaters
hecterss | | | - | h: logiens | | | and the first own | m.Hitisers | m.H.Inters | | : | Cubic meters | Cubic meters | | Cetews | temporatura. | | | | | | Mettiph by | 7 | LEMBIR | | 5.5 | g 5 | 4. | AREA | | 9 1 | 8 3 | 9.7 | : | MASS (weight) | 2 | \$. | } | V. UME | | . 5 | 2 | 0.47 | X. | . 8 | K : | TEMPERATURE (exact) | Av9 (after | (A) | | | | Apprezimete Conversions to | : | When You Know | | 1 | | mchos | ijį | e e | | 1 | sensor suges | | square miles | | - ₁ | 100 | - | (3000) | | , | | fluid Gunche | įį | | Sellen. | Culture yands | 21 | | | | | | | | ļ | | | | 9 | <u>.</u> 1 | 1 | | | ٦, | ኔ ን | ı"ı | | | | | | | | <u>.</u> | 1 | . 1 | . % | is | · | | | • | | | # TABLE OF CONTENTS | Section | <u> </u> | Page | |---------|---------------------------------------|--| | 1. | INTRODUCTION | 1 | | | 1.1 Background | 1
2
3 | | 2. | EXPERIMENTAL APPARATUS AND TECHNIQUES | 6 | | | 2.1 Equipment | 6 | | | 2.1.1 Engines | 6
7
7
13 | | | 2.2 Test Procedure | 25
31 | | 3. | RESULTS | 34 | | | 3.1 Fuel Consumption | 34
45
45
45
55
58
63 | | 4. | SUMMARY AND CONCLUSIONS | 64 | | 5. | RECOMMENDATIONS | 68 | | APPENDI | X A - FUEL PROPERTIES | 69 | | APPENDI | X B - SAMPLE CALCULATIONS | 73 | | APPENDI | X C - TEST RESULTS | 98 | | APPENDI | X D - REPORT OF NEW TECHNOLOGY | 141 | | DEFEREN | OEC | 142 | # LIST OF ILLUSTRATIONS | Figure | | Page | |--------|---|------| | 2-1 | ENGINE INSTALLATION; CUMMINS ENGINE TESTS | 9 | | 2-2 | ENGINE INSTALLATION; DETROIT DIESEL TESTS | 10 | | 2-3 | TYPICAL HYDROSHEAR | 11 | | 2-4 | PROTOTYPE EMULSIFIED FUEL SYSTEM | 12 | | 2-5 | HYDROCARBON ANALYZER | 16 | | 2-6 | ANALYZER SYSTEM FOR CARBON MONOXIDE AND CARBON DIOXIDE | 17 | | 2-7 | ANALYZER SYSTEM FOR OXIDES
OF NITROGEN | 18 | | 2-8 | EMISSION INSTRUMENT CONSOLE, FRONT VIEW | 23 | | 2-9 | EMISSION INSTRUMENT CONSOLE, END VIEW | 24 | | 2-10 | PARTICULATE MEASURING SYSTEM | 26 | | 2-11 | ENGINE SPEED AND POWER OUTPUT, MAXIMUM HORSEPOWER AND PROP LOAD, CUMMINS ENGINE | 27 | | 2-12 | OPERATING TIME AS FUNCTION OF ENGINE SPEED FOR CUMMINS ENGINE-POWERED CUTTERS | 29 | | 2-13 | ENGINE SPEED AND POWER OUTPUT, MAXIMUM HORSEPOWER AND PROP LOAD, DETROIT DIESEL TWELVE-CYLINDER ENGINE | 30 | | 2-14 | COMPARISON OF CARBON BALANCE AND MEASURED FUEL-AIR RATIO, CUMMINS ENGINE TESTS | 33 | | 3–1 | FUEL CONSUMPTION, CUMMINS ENGINE, 1800 RPM | 35 | | 3-2 | FUEL CONSUMPTION, CUMMINS ENGINE, 1200 RPM | 36 | | 3-3 | FUEL CONSUMPTION, CUMMINS ENGINE, 900 RPM | 38 | | 3-4 | FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM | 39 | | 3-5 | FUEL CONSUMPTION, DETROIT DIESEL ENGINE, FOUR SPEEDS | 40 | | 3-6 | FUEL INJECTION TIMING AS FUNCTION OF ADJUSTMENT DIMENSION, DETROIT DIESEL ENGINE, 12V-149TI (180 INJECTORS) | 42 | # LIST OF ILLUSTRATIONS (CONTINUED) | Figure | | Page | |--------|---|------| | 3-7 | EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM | 43 | | 3-8 | EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1400 RPM | 44 | | 3-9 | EXHAUST SMOKE, CUMMINS ENGINE, 1800 RPM | 46 | | 3-10 | EXHAUST SMOKE, CUMMINS ENGINE, 1200 RPM | 47 | | 3-11 | EXHAUST PARTICULATE EMISSIONS AS FUNCTION OF PERCENT WATER, DETROIT DIESEL ENGINE | 48 | | 3–12 | EXHAUST PARTICULATE EMISSIONS AS FUNCTION OF ENGINE SPEED, DETROIT DIESEL ENGINE | 49 | | 3-13 | EMISSIONS OF NITRIC OXIDE, CUMMINS ENGINE, 1800 RPM | 51 | | 3-14 | EMISSIONS OF NITRIC OXIDE, CUMMINS ENGINE, 1200 RPM | 52 | | 3-15 | TIMING OF THE BEGINNING OF FUEL INJECTION, CUMMINS ENGINE | 53 | | 3–16 | EMISSIONS OF OXIDES OF NITROGEN, DETROIT DIESEL ENGINE, FIVE SPEEDS | 54 | | 3–17 | EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1800 RPM | 56 | | 3-18 | EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1200 RPM | 57 | | 3-19 | EMISSIONS OF UNBURNED HYDROCARBONS, DETROIT DIESEL ENGINE, FIVE SPEEDS | 59 | | 3-20 | EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1800 RPM | 60 | | 3-21 | EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1200 RPM | 61 | | 3-22 | EMISSIONS OF CARBON MONOXIDE, DETROIT DIESEL ENGINE, | 62 | # LIST OF TABLES | <u>Table</u> | | Page | |--------------|--|------| | 2-1 | ENGINE SPECIFICATIONS | 8 | | 2-2 | DATA OBTAINED FROM TEST CELL | 14 | | 2-3 | INSTRUMENTS AND RANGES ON L-4 EMISSIONS CART | 19 | | 2-4 | SWRI HEATED HYDROCARBON ANALYZER FLOW SCHEMATIC COMPONENT DESCRIPTION | 20 | | 2-5 | NDIR CO AND CO ₂ FLOW SCHEMATIC COMPONENT DESCRIPTION | 21 | | 2-6 | HEATED CHEMILUMINESCENT NO _X ANALYZER FLOW SCHEMATIC COMPONENT DESCRIPTION | 22 | | 3-1 | DETROIT DIESEL 12V-149TI ENGINE FUEL INJECTION TIMING | 41 | | A-1 | FUEL ANALYSIS DATA | 70 | | A-2 | MARINE ENGINE PERFORMANCE CURVE | 71 | | A-3 | ESTIMATED PERFORMANCE SERIES V-149TI MARINE 16V-149TI CREW BOAT, JACKET WATER INTERCOOLER, 150 INJECTORS | 72 | | B-1 | TEST DATA | 74 | | B-2 | WATER FLOWMETER CURVE COEFFICIENTS | 79 | | B-3 | AIR TEMPERATURE CORRECTION FACTORS | 84 | | B-4 | POPULATION SAMPLES | 94 | | B-5 | CUMULATIVE DISTRIBUTION | 96 | | C-1 | ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, BASELINE | 99 | | C-2 | ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 5% WATER | 100 | | C-3 | ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 10% WATER | 101 | | C-4 | ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 15% WATER | 102 | | C-5 | ENGINE TEST RESULTS. CHMMINS ENGINE. 900 RPM. 20% WATER | 103 | # LIST OF TABLES (CONTINUED) | <u>Table</u> | | Page | |--------------|--|------| | C-6 | ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 25% WATER | 104 | | C-7 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, BASELINE | 105 | | C-8 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 5% WATER | 106 | | C-9 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 10% WATER | 107 | | C-10 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 15% WATER | 108 | | C-11 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 20% WATER | 109 | | C-12 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 25% WATER | 110 | | C-13 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, BASELINE | 111 | | C-14 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 5% WATER | 113 | | C-15 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 10% WATER | 114 | | C-16 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 15% WATER | 115 | | C-17 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 20% WATER | 116 | | C-18 | ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 25% WATER | 117 | | C-19 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 500 RPM | 118 | | C-20 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, BASELINE | 119 | | C-21 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, WITH WATER ADDITION | 120 | | C-22 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, BASELINE | 121 | | C-23 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 5, 10, 15% WATER | 122 | | C-24 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 20, 25% WATER | 123 | | C-25 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 2.4 DEGREES | 124 | # LIST OF TABLES (CONTINUED) | <u>Table</u> | | Page | |--------------|--|------| | C-26 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 4.1 DEGREES | 125 | | C-27 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING ADVANCED 2.8 DEGREES | 126 | | C-28 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING ADVANCED 5.5 DEGREES | 127 | | C-29 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, BASELINE | 128 | | C-30 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, WITH WATER ADDITION | 129 | | C-31 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, BASELINE | 130 | | C-32 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, WITH WATER ADDITION | 131 | | C-33 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, FUEL INJECTION TIMING RETARDED 4.1 DEGREES | 132 | | C-34 | ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1600 RPM, BASELINE | 133 | | C-35 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 600 RPM | 134 | | C-36 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM | 135 | | C-37 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM | 136 | | C-38 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM | 137 | | C-39 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, 15, 20, and 25% WATER | 138 | | C-40 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM | 139 | | C-41 | PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, | 140 | # 1. INTRODUCTION The current emphasis on fuel conservation has prompted the study of many devices and techniques oriented toward a reduction in engine fuel consumption. This report describes the procedures used and the results obtained during a study of unstabilized water-in-fuel emulsions as fuels for engines representative of U.S. Coast Guard main propulsion systems. The complete program involved an investigation of two high-speed diesel engines with nominal maximum power ratings in the 1000 hp range. A Cummins VTA-1710 engine was used to represent the military version (VT12-900M) that is utilized by the USCG. In addition, a Detroit Diesel 12V-149TI engine was employed for the acquisition of data representative of the 16 cylinder version installed in the USCG cutters. #### 1.1 BACKGROUND The use of water-in-fuel emulsions for fuel conservation has been a subject of continuing interest for several years. During 1977, Southwest Research Institute conducted a program for the Department of Transportation in which fuel-water emulsions were examined in the context of a single-cylinder test engine. The results obtained during that study indicated that a reduction in fuel consumption on the order of five percent might be available for engines representative of marine propulsion. It was recommended that the testing effort be continued using multi-cylinder engines, and the present study describes the partial fulfillment of that recommendation. Various investigators have recommended the use of different devices and philosophies for the production of water-in-fuel emulsions used as engine fuels. One approach suggests the addition of surfactant compounds to the fuel-water mixture. The surfactants stabilize the emulsions and allow batch mixing of fuel supplies. For the present study, however, this approach was not considered feasible, since the USCG would prefer to avoid the requirement for precise blending of fuel additives with the large quantities of fuel utilized for patrol boats. Furthermore, it was considered necessary to view water of Miller . the emulsified fuel as an option to clear diesel fuel, and the storage of a second bulk fuel aboard existing cutters was not considered appropriate. This study deals with the use of unstabilized emulsions as engine fuels. The water and fuel were emulsified immediately prior to use by the engine, and emulsified fuel that was supplied to the engine but not burned was recycled through the emulsifier circuit. #### 1.2 OBJECTIVES The initial goal of the study was the identification and the specification of an appropriate emulsification device. It had previously been observed that some devices offered for use as fuel emulsification systems were inappropriate to shipboard operation by virtue of physical size or
power requirements. Furthermore, it was not clear that all devices were equally capable of providing useful emulsions. Therefore, the initial program phase was devoted to selection of an emulsification device. Following the specification and purchase of a suitable emulsifier, the program objective was the determination of the effect of the emulsified fuels on engine operation. All tests were performed in a laboratory environment; the engines were connected to a dynamometer. Particular emphasis was placed upon fuel conservation, but measurements of exhaust emissions were also obtained. A further objective was the determination of results on a statistically significant basis in order that a numerical confidence could be placed in the results. As an additional program objective, it was specified that encouraging results from the test bed studies would yield design information appropriate to the assembly of a prototype fuel emulsification system for shipboard use. The final program phase would involve field testing of the prototype on a USCG cutter. #### 1.3 APPROACH The program was initiated with a selection process devoted to the definition of emulsification systems appropriate to the study. Invitations were sent to all individuals or companies known to be involved in the development of emulsification systems, and an advertisement was placed in the Commerce Business Daily that outlined the program requirements. Six prospective suppliers responded to the invitation and offered devices for evaluation in the SwRI laboratory. A system was provided by SwRI that would supply metered quantities of fuel and water to the prototype systems on a uniform basis. The emulsification systems were exercised within their performance limits as defined by the supplier, and samples of water-in-fuel emulsion were obtained over the 0 to 25 percent concentration range that was of interest. Immediately following collection of each sample, the time required for accumulation of an obvious separation layer was observed. This process allowed the assessment of the capability of each device to produce an emulsion that would be useful during the engine studies. In addition, each prospective emulsification device was evaluated on the basis of energy usage, physical size, complexity, compatibility with the shipboard environment, and the need for auxiliary hardware such as pumps and controllers. Individual evaluations were performed by representatives of SwRI, the Transportation Systems Center, and the USCG. As a result of the evaluation process, two emulsification systems were selected for use during the engine operation phase of the program, and purchase orders for units of an appropriate size were executed. Since the response of the engine fuel system to the presence of water was unknown, a brief sequence of test runs was performed using stabilized emulsions containing 5 and 20 percent water by volume. The single purpose of these tests was the determination of any observable detrimental effects on engine operation as a result of water in the fuel system. No detrimental effects were observed, therefore the testing with unstabilized mixtures was initiated. and the same of the same During all of the test sequences the laboratory engine was operated at controlled speeds and loads representative of the cutter prop load at each speed. On this basis, the maximum engine output would be observed only at the engine rated speed. Although some test runs were performed at maximum speed and load, the data were of interest only for certification of the fact that the engine met the ratings specified by the manufacturer. At the other test speeds the prop loads were considerably below the maximum possible engine output. Throughout the bulk of the test program, the engine remained in the configuration appropriate to the use of diesel fuel alone. Since the fuel-water emulsion was regarded as an alternate fuel for boat operation, it was not considered appropriate to optimize the engine operating parameters for emulsified fuel use. It is possible that fuel consumption results different from those obtained could have been achieved by adjusting the engine operating parameters; the injection timing is particularly significant in this context, and some tests were performed with timing variation on the two-stroke cycle engine. The emulsifier purchased for use during the tests was integrated into a fuel system capable of supplying the engine demand at any speed and load. The fuel system included ample provision for maintaining the state of the emulsions and for re-emulsifying fuel returned from the engine. In addition, a provision was included to allow sampling and subsequent observation of quantities of emulsified fuel immediately prior to introduction into the engine. Observation of these samples allowed additional verification of the water concentration of the emulsion. During the test runs the engine was operated at selected points on the prop load curve with various water concentrations. Each test sequence, which occupied one day, involved operation of the engine at a single speed-load point. The first test run was performed with clear diesel fuel, followed by tests at 5, 10, 15, 20, and 25 percent water. Upon completion of these runs the fuel system was flushed and the test with clear diesel fuel was repeated. During the performance of each test run, extensive observations of fuel consumption and other engine operating parameters were made. The complete body of data includes information at speeds along the entire prop load curve for each test engine. In addition, the data include extensive testing at two speed-load points for the Cummins engine; the two points represent high utilization by operating USCG cutters. The data allow the determination of the optimum water concentration at each speed-load point; this information would be useful for the design of a shipboard control system. # EXPERIMENTAL APPARATUS AND TECHNIQUES The performance of the experiments associated with this study involved specific equipment, test procedures, and data evaluation routines. The salient features of these items are described in this section. # 2.1 EQUIPMENT The equipment utilized for the evaluation of water-in-fuel emulsions consisted of engines installed in a laboratory test cell, a fuel system uniquely appropriate for the production and distribution of emulsified fuel, and a broad variety of instrumentation used for the acquisition of data. Each of these categories is worthy of an expanded description. ## 2.1.1 Engines The engines used aboard USCG cutters of the 82-ft WPB class are manufactured by the Cummins Engine Company and characterized by Model No. VT12-900M. The units have a total displacement of 1710 cubic inches and are rated at 800 shaft horsepower at 2300 rpm. This rating corresponds to approximately 875 brake horsepower at the same speed. The engine available to this effort was a Cummins Model VTA-1710-C800, the industrial version of the USCG engine described above. The engine is ordinarily rated at 800 brake horsepower at 2100 rpm. The engine was equipped with an automotive type AFC fuel pump rather than the older style marine pump. For the purposes of this study, the fuel pump and governor were modified to allow engine operation up to 2300 rpm, and a maximum power capability of 845 horsepower at 2300 rpm was demonstrated in the laboratory. This value is within the five percent tolerance specified by the manufacturer. The military and industrial versions of the 1710 engine differ slightly in the timing at which the fuel injection event begins. This difference amounts to approximately three crank angle degrees, and this deviation was not deemed sufficient to warrant the major effort involved in a timing change. The engines used to power 95-ft WPB cutters are manufactured by the Detroit Diesel Allison Division of the General Motors Corporation; the specific model designation is 16V-149TI. The displacement of each unit is 2384 cubic inches, and each engine is rated at 1235 shaft horsepower at 1800 rpm. The engine that was available for use during this study was a Detroit Diesel Model 12V-149TI; this unit is a twelve-cylinder version of the USCG engine. During the testing program, the engine was operated at approximately the same horsepower output per cylinder that the marine version would produce. Thus, although the total output of the twelve-cylinder engine was low, the details of engine operation were quite representative of the sixteen-cylinder counterpart. The major specifications of the engines used during the test program are outlined in Table 2-1, and data from the manufacturers is shown in Appendix A. ## 2.1.2 Dynamometer and Test Cell Each engine was installed in a test cell at the SwRI laboratory and connected to an eddy-current dynamometer capable of absorbing up to 1000 horsepower. The engine installation is shown in Figures 2-1 and 2-2. The dynamometer utilized was an absorbing unit only; no motoring capability was available. The engine speed was determined through the use of a magnetic pickup and a 60-tooth gear installed in the engine-dynamometer coupling. The speed signal was transmitted to a digital counter used as an output device, and, in addition, the signal was supplied to a dynamometer controller capable of maintaining engine speed within a tolerance of one rpm. The dynamometer beam load was measured through the use of a strain gauge type load-cell connected to an output device at the control console. The load-cell was subjected to a weekly deadweight calibration. ## 2.1.3 Fuel System A fuel supply system was assembled that would meter, premix, and emulsify the fuel and water in concentrations that were of interest. Although certain and the State of the last #### TABLE 2-1. ENGINE SPECIFICATIONS Cummins Engine Company, Inc. Model: VTA-1710-C800 (VT12-900M) Type: Four Stroke Cycle Bore and Stroke: 5.5 x 6 No. of Cylinders: 12 Displacement: 1710
Cubic Inches Rated Horsepower: 800 at prop shaft Rated Speed: 2300 RPM General Motors Corporation Detroit Diesel Allison Division Model: 12Y-16TT (16Y-16TT) Model: 12V-149TI (16V-149TI) Type: Two Stroke Cycle Bore and Stroke: 5.75 x 5.75 No. of Cylinders: 12 (16) Displacement: 1788 Cubic Inches Rated Horsepower: 900 (1200) Rated Speed: 1800 RPM FIGURE 2-1. ENGINE INSTALLATION; CUMMINS ENGINE TESTS FIGURE 2-2. ENGINE INSTALLATION; DETROIT DIESEL TESTS features of the system were designed specifically to accommodate the Cummins engine, the same system proved useful for both of the engines tested. In ordinary operation the fuel would be supplied directly to the injection pump of the engine, and fuel not used by the engine would be returned to a storage tank. The Cummins injection system is unique in that the returned fuel typically contains quantities of gas which must be removed prior to recycling of the unburned fuel through the engine. In usual installations, this capability is provided by a vented storage tank. For the purposes of this study, it was necessary to assemble a fuel system that would generate the fuel-water emulsion while simultaneously satisfying the requirement for degasification of the return fuel. A schematic diagram of the system used is shown in Figure 2-4, and the fuel system is visible in Figure 2-1. Fuel and water were supplied independently to a mixing tee; this device provided a crude mixture prior to emulsification. water was utilized throughout, and the line pressure provided the driving force. Fuel was pumped from a storage tank into the mixing arrangement. A constant fuel level was maintained in a float-controlled tank having a volume of approximately one-half gallon. This open tank allowed gases trapped in the return fuel to escape prior to fuel recycling. Fuel was removed from the float-controlled tank by a one horsepower gear pump which supplied a pressure of approximately 100 psi to the fuel-water emulsifier. The emulsifier used in this system was a Hydroshear device supplied by Gaulin Corporation; the unit operates by subjecting the fuel-water mixture to an extremely high shear state. A drawing of a typical Hydroshear after Lawson 11 is shown in Figure 2-3. The pressure at the outlet of the emulsifier was typically 20 to 25 psi. FIGURE 2-3. TYPICAL HYDROSHEAR ļ FIGURE 2-4. PROTOTYPE EMULSIFIED FUEL SYSTEM At the emulsifier outlet, the fuel was directed either to the engine fuel pump or to a by-pass loop. Fuel directed toward the engine passed through a control valve which lowered the pressure to a value below 5 psi in order to meet the requirements of the engine fuel system. Fuel returned from either the engine fuel pump or the engine fuel injectors was routed into the by-pass portion of the system. The unused emulsion was conducted through a heat exchanger for cooling prior to return to the float-controlled tank. Pressures and temperatures were measured at points of interest throughout the fuel supply system, and a sample port was provided at the engine fuel pump for use in the verification of water concentrations. During the tests, the fuel system was operated at a continuous flow rate approximately equal to the engine maximum demand. Thus, a substantial flow rate was always present in the by-pass loop, and the emulsifier was not subjected to varying conditions as the engine load changed. During steady-state operation, the flow rate of the fuel-water mixture to the float-controlled tank was equal to the rate at which the fuel was consumed by the engine, but the flow through the emulsifier loop was constant. #### 2.1.4 Instrumentation The documentation of engine performance using emulsified fuels required the measurement of a number of quantities during engine operation. The individual parameters for which data were recorded during each test run are listed in Table 2-2. The dry bulb and wet bulb temperatures used for calculation of humidity were measured using mercury-in-glass thermometers. Exhaust temperatures were measured with type K thermocouples, and other temperatures were measured using type J thermocouples. All of the thermocouple readings were obtained through the use of multi-point switches and readout devices appropriate to the thermocouple calibration. Pressures were measured using Bourdon tube gauges, mercury manometers, or water manometers as appropriate for the value and range of the metered quantity. The value of barometric pressure was obtained during each test run. TABLE 2-2. DATA OBTAINED FROM TEST CELL Speed Load Fuel Rate Pressures: Barometer Oil Fuel Rail Turbocharger Boost Exhaust Turbine Inlet Inlet Depression Fuel Inlet Air Flowmeter Air Filter Emulsifier Fuel Supply Water Supply Emissions: Hydrocarbons Carbon Monoxide Nitric Oxide Oxides of Nitrogen Carbon Dioxide Oxygen Smoke Water Flow Rate Water Concentration Temperatures: Engine Coolant Inlet Outlet Oil Sump Fuel Inlet Fuel Mixture Return Fuel Intake Air Cylinder Exhaust Exhaust Manifold Turbine Inlet Compressor Outlet Compressor Outlet Charge Air Water Cell Air Dry Bulb Wet Bulb Return Fuel Cooler The flow rate of diesel fuel was continuously monitored through the use of a commercial linear mass flowmeter. However, the primary technique for determination of fuel flow was a direct mass measurement obtained using a platform balance and a stop watch. Using this technique, the time required for consumption of a known mass of fuel was recorded. The mass was adjusted in such a way that typical fuel times were on the order of two minutes, and several readings were obtained during each test run. The water flow was monitored through the use of a variable area flowmeter installed in the water inlet line. The meter was calibrated prior to the beginning of the test program, and tables were prepared which listed the water flowmeter reading for each desired water concentration over a range of fuel rates applicable to each test point. To establish a particular water concentration in the fuel, the engine operator would read the fuel mass flowmeter, consult the table, and set the water flow rate accordingly. The water concentration was then verified by obtaining a sample of the emulsion at the engine inlet and allowing separation of the water and diesel fuel to occur. The air flow to the engine was measured using a laminar flow element rated at 2000 cfm. The pressure drops across the flowmeter filter and across the metering element were measured using inclined water manometers, and the air flow rate was established from the meter calibration using corrections for ambient temperature and pressure. During tests of the Detroit Diesel engine, additional air flowmetering capability was required. The 2000 cfm laminar flow element was used in the air supply to one-half of the engine (one bank of six cylinders). The air flow to the remaining engine cylinders was metered with an ASME flow nozzle installed in an inlet plenum chamber. Instruments appropriate to diesel engine testing were used for the measurement of gaseous emissions. The concentration of unburned hydrocarbons in the exhaust stream was monitored using a heated flame ionization detector. Non-dispersive infrared analyzers were used for measurement of carbon monoxide and carbon dioxide, and a chemiluminescent analyzer was used to establish levels of nitric oxide and oxides of nitrogen. The oxygen level in the exhaust was monitored using a polarographic analyzer. Schematic diagrams of the components of the emissions instrumentation system are shown in Figures 2-5, 2-6, and 2-7, and descriptions of the individual hardware items are provided in Tables 2-3, 2-4, 2-5, and 2-6. Photographs of the instrument console are provided as Figures 2-8 and 2-9. The exhaust smoke was measured through the use of a USPHS type opacity meter incorporated in the exhaust system at the boundary of the test cell. FIGURE 2-5. HYDROCARBON ANALYZER a continue single FIGURE 2-6. ANALYZER SYSTEM FOR CARBON MONOXIDE AND CARBON DIOXIDE could of michigan FIGURE 2-7. ANALYZER SYSTEM FOR OXIDES OF NITROGEN TABLE 2-3. INSTRUMENTS AND RANGES ON L-4 EMISSIONS CART | Emission | Detection
Method | Instrument | Range | Nominal
Concentration | |---|---------------------|--------------------|-------------|---| | Carbon Monoxide
(S/N AIA-23) | NDIR | Horiba OPE-15 | 1
2
3 | 0 - 1000 ppm CO
0 - 3000 ppm CO
0 - 6000 ppm CO | | Carbon Dioxide
(S/N 15395) | NDIR | Horiba OPE-15 | 1
2
3 | 0 - 16% CO ₂
0 - 6% CO ₂
0 - 2% CO ₂ | | Oxides of Nitrogen
(S/N LOAR-9691-110) | CL | TECO 10 | 1
2
3 | 0 - 250 ppm
0 - 1000 ppm
0 - 2500 ppm | | Hydrocarbons
(S/N 10010) | FID | Beckman 402 | 1
2
3 | 0 - 500 ppm C
0 - 1000 ppm C
0 - 5000 ppm C | | Oxygen
(S/N 271-001) | Polaro-
graphic | Beckman
OM-11EA | 1
2 | 0 - 25% 0 ₂
0 - 5% 0 ₂ | TABLE 2-4. SWRI HEATED HYDROCARBON ANALYZER FLOW SCHEMATIC COMPONENT DESCRIPTION | Component | Description | Description of Function | |------------|-------------|--| | Valve | V14 | QC's act as span/zero selector valve | | Valve | V13 | Span/zero gas flow control valve | | Valve | V12 | Sample flow control valve | | Gage | P5 | Sample pressure | | Gage | P6 | HFID fuel pressure | | Gage | P 7 | HFID air pressure | | Restrictor | Rs1 | Sample capillary (Beckman) | | Restrictor | Rs2 | HFID fuel restrictor (Beckman) | | Restrictor | Rs3 | HFID air restrictor (Beckman) | | Detector | HFID | Beckman 402 HFID detector | | Water trap | D2 | Bypass flow water trap (~34°F) | | Flowmeter | FL3 | Bypass flowmeter (~5 CFH) | | Filter | F5 | 7.0 cm stainless steel flip top filter | | Pump | Pu3 | Metal bellows MB-158 pump | | Regulator | R7 | Sample backpressure regulator | | Regulator | R8 | HFID fuel regulator | | Regulator | R9 | HFID air regulator | TABLE 2-5.
NDIR CO AND CO_2 FLOW SCHEMATIC COMPONENT DESCRIPTION | Component | Description | Description of Function | |------------|-------------|---| | Valve | V3 | QC's act as CO selector valve V | | Valve | V4 | CO flow control valve | | Valve | V 5 | QC's act as CO ₂ selector valve | | Valve | V6 | CO ₂ flow control valve | | Valve | V19 | CO ₂ sample/calibrate selector valve | | Valve | V20 | CO sample/calibrate selector valve | | Gage | G3 | CO ₂ instrument pressure | | Gage | G4 | CO instrument pressure | | Gage | P2 | CO sample/span pressure | | Gage | Р3 | CO2 sample/span pressure | | Regulator | R1 | CO span/zero pressure regulator | | Regulator | R2 | Bypass backpressure regulator | | Regulator | R3 | CO ₂ span/sero pressure regulato | | Flowmeter | FL1 | CO ₂ instrument flow | | Flowmeter | FL2 | CO/CO ₂ bypass flow | | Flowmeter | FL6 | CO instrument flow | | Water trap | WT1 | Water trap (34°F) for CO/CO ₂ instrument | | Filter | F1 | 7.0 cm stainless steel flip top filter holder | | Pump | Pu2 | Sample pump | TABLE 2-6. HEATED CHEMILUMINESCENT NO $_{\mbox{\scriptsize K}}$ ANALYZER FLOW SCHEMATIC COMPONENT DESCRIPTION | Component | Description | Description of Oven | |------------|-------------|---| | | | | | Valve | V8 | QC's act as selector valve V8 | | Valve | V9 | Sample/calibrate selector valve | | Valve | V10 | Sample flow control valve | | Valve | V11 | NO/NO_X selector valve | | Valve | V15 | NO flow control valve | | Valve | V16 | System leak check valve | | Valve | V17 | NO/NO _x total flow controller | | Valve | V18 | Ozone flow control valve | | Gage | P4 | Sample backpressure | | Gage | ; P8 | Oxygen pressure gage | | Gage | P9 | Reaction chamber vacuum | | Flowmeter | FL4 | Sample bypass flowmeter | | Regulator | R5 | Sample backpressure regulator | | Regulator | R10 | Oxygen pressure regulator | | Dryer | D2 | Bypass flow water trap (~34°F) | | Water Trap | WT2 | NO _X /NO water trap (IPA·CO ₂ @ -105°F) | | Filter | F3 | 7.0 stainless steel flip top filter holder | | Pump | Pul | Sample pump | FIGURE 2-8. EMISSION INSTRUMENT CONSOLE, FRONT VIEW FIGURE 2-9. EMISSION INSTRUMENT CONSOLE, END VIEW Measurements of exhaust particulate emissions were obtained during some of the tests of the Detroit Diesel engine. The primary tool utilized for this series of measurements was a dilution tunnel of the type shown in Figures 2-2 and 2-10; the dilution of the sample stream is utilized for cooling and mixing prior to the accumulation of a particulate sample. In order to obtain a sample of the exhaust, probes were located in each of the engine exhaust ducts at a point downstream from the turbocharger outlets. A regulating valve was located in each sample line, and the pressure drop across the valve was used as a means of equating the sample line flow rates. Thus, a single sample representative of both engine exhaust ducts was obtained and supplied to the particulate tunnel. The tunnel had a nominal diameter of eight inches, and air flow rates sufficient for a dilution ratio of 10 to 20 were utilized. Within the tunnel, the exhaust sample was mixed with the dilution air and cooled to 125°F. A metered sample of the diluted stream was obtained and applied to a 47 millimeter Pallflex T60A20 filter that was weighed prior to the beginning of the test. Subsequent weighing, along with the measured flow of the air stream, allowed the calculation of the particulate weight per standard cubic foot of engine exhaust. In general, only one sample filter was used during this test series; the multiple filters shown in Figure 2-10 would be utilized when more elaborate analyses of the particulate matter were required. #### 2.2 TEST PROCEDURE The general philosophy that governed the performance of the alternate fuel tests was closely related to the ultimate use of fuel-water emulsions on USCG cutters; thus, it was desired to obtain data that would be representative of boat operation. A sample of engine speeds and loads was obtained for one USCG cutter powered by Cummins engines, and the prop load curve for the engine was calculated. This curve is shown, along with the engine maximum output, in Figure 2-11. The specific test points for consideration during the evaluation program were selected from locations along the prop load curve. Transfer of the second FIGURE 2-10. PARTICULATE MEASURING SYSTEM FIGURE 2-11. ENGINE SPEED AND POWER OUTPUT, MAXIMUM HORSEPOWER AND PROP LOAD, CUMMINS ENGINE In order to establish appropriate test points for comprehensive evaluation, records representative of over 4900 hours of operation of 14 cutters powered by Cummins engines were evaluated. Figure 2-12 shows engine speed plotted against the percentage of the total operating time that was spent at each speed. It is apparent from this representation that engine speeds of 1200 and 1800 rpm are particularly important during boat operation; a fuel system designed for conservation of diesel fuel should exhibit a significant effect at these speeds in order to be effective from an overall viewpoint. The most comprehensive testing, therefore, was performed at speeds of 1200 and 1800 rpm and the prop load associated with each speed. In addition, some test data were obtained at 900 rpm and prop load. For the tests involving the Detroit Diesel engine, the propeller load curve supplied by the manufacturer for the 16V-149TI engine was used. The loads were multiplied by 0.75 in order to account for the difference in the number of cylinders between the test engine and the marine engine; the result is shown in Figure 2-13. Tests were performed at 200 rpm increments along the prop load curve, but the comprehensive evaluation of specific points was not conducted. No data was available to evaluate the 95-ft. WPB duty-cycle with Detroit Diesel engines. The procedure used during each test run began with a check of the instruments associated with data acquisition. In each case calibrations were performed as required. The engine was started and allowed to warm up, and then the speed and load selected for that day of testing were established by adjusting the diesel fuel-flow rate and the dynamometer controller. The initial engine operation was performed with clear No. 2 diesel fuel having specifications as shown in Appendix A, and baseline data were recorded prior to the introduction of water into the fuel system. Upon completion of the baseline data acquisition, a water flow appropriate to a five percent concentration was initiated. The dynamometer load was adjusted to the prop load test point by adjusting the output of the engine fuel pump, and a sample of the emulsion was obtained for verification of water concentration. Data were recorded at the five percent concentration; FIGURE 2-12. OPERATING TIME AS FUNCTION OF ENGINE SPEED FOR CUMMINS ENGINE-POWERED CUTTERS FIGURE 2-13. ENGINE SPEED AND POWER OUTPUT, MAXIMUM HORSEPOWER AND PROP LUAD, DETROIT DIESEL TWELVE-CYLINDER ENGINE this process involved repeated measurements of the fuel rate. This sequence was then repeated at water concentrations of 10, 15, 20, and 25 percent by volume. Upon completion of the test run at the highest water concentration, the fuel system was flushed with clear diesel fuel, and the baseline test run was repeated. Subsequent days of testing involved repetition of this entire process at other speed and load conditions. All data were recorded on a permanent record sheet, and individual values were subsequently introduced into a computer data reduction program. ## 2.3 DATA REDUCTION AND CALCULATIONS A computer routine was utilized for the calculation of performance quantities and for the comparison of data obtained under the same operating conditions. A set of sample calculations is included in Appendix B. The sample calculations reflect the computations made by the computer program for each test run. The basic performance quantities, such as horsepower, torque, and specific fuel consumption, were calculated using conventional relationships and constants appropriate to the specific instruments employed. These basic parameters are listed, along with measured quantities, in the tabulations of the results shown in Appendix C. At the test points described by 1200 rpm and 1800 rpm for the Cummins engine, the test sequence over the spectrum of water concentrations was repeated several times in order to build a statistical basis for the data. Thus, a single point, such as 1200 rpm and 15 percent water, was evaluated on several test days, and three to five individual runs were performed at that point. Since each individual test run included several fuel rate measurements, the flow rate of diesel fuel specified for each run in Appendix C represents an average of several measurements. These averages for each run were then included in an overall average applicable to each test point defined by speed, load, and water concentration. ... roate-win catego The raw data from the emission measurement procedures was interpreted through calibration curves developed for each instrument in terms of the concentration of the contaminant species in the exhaust stream. The values for each test run are reported in terms of parts per million or percent in Appendix C. During each test run for which emissions were measured, the data on exhaust emissions allowed the calculation of a carbon balance fuel-air ratio. This value was compared to the fuel-air ratio obtained by direct measurement of fuel flow rate and air flow rate. The results of the comparison for the Cummins engine are shown in Figure 2-14, which describes the error between the two values using the measured value as a standard. It should be noted that the Federal procedure for certification of diesel engines allows a tolerance of 10 percent in the comparison between calculated and measured fuel-air ratios. During both the Cummins and
GM engine tests, comprehensive data were obtained at selected test points. The average diesel fuel flow rate at each test point defined by speed, load, and water concentration was obtained from the collection of fuel rates for the individual test runs. Then, the standard deviation at each test point was calculated. As a further step, a 90 percent confidence band was calculated for each test point using the Student's t-distribution. This step allowed an indication of the significance that could be attached to the test results. The percentage change in diesel fuel flow rate was then calculated for each test point using the zero water concentration data as the baseline for each test point. A further statistical test based upon the Student's t-distribution was applied to the fuel consumption data. For those test points where the presence of water indicated a significant change in diesel fuel consumption, a test was applied which measured the confidence with which it could be stated that the mean of the fuel consumption measurements was, in fact, different from the mean of the fuel flow measurements at zero water concentration. The results of this test allow the attachment of a numerical confidence to the statement that the presence of water in the fuel actually causes a change in the flow rate of diesel fuel. FIGURE 2-14. COMPARISON OF CARBON BALANCE AND MEASURED FUEL-AIR RATIO, CUMMINS ENGINE TESTS # 3. RESULTS The results of the testing program are phrased in terms of fuel consumption, smoke, gaseous emissions, and engine operating parameters. Each of these qualities are discussed in detail in the following sections. ### 3.1 FUEL CONSUMPTION The primary thrust of the entire program was an assessment of the effect of water in the fuel on the quantity of diesel fuel consumed by the engine at a particular speed and load. The fuel consumption results, therefore, are of particular interest in the context of the overall program goals. The fuel consumption measurements at the 1800 rpm prop load test point for the Cummins engine are shown in Figure 3-1. The solid curve is drawn through the mean values of all test runs at each water concentration, and the 90 percent confidence band is shown by broken lines. The curve indicates that the maximum effect of the presence of water was obtained at a concentration of 20 percent by volume, where the 20 percent figure represents the comparison between water volume and the total volume of liquid entering the engine. With 20 percent water present in the fuel, the diesel fuel flow rate was reduced by 1.7 percent by comparison with the flow rate of clear diesel fuel without water addition. The statistical analysis allows the statement that a 95 percent confidence exists that the means of the test runs at zero percent water and 20 percent water are actually different. Or, in other words, there is a 95 percent confidence that the sample populations at zero percent water and 20 percent water are different, and the observed change did in fact occur. Results for the test runs at 1200 rpm and prop load are shown in Figure 3-2. The presentation format is identical to that used for the 1800 rpm tests. In this case, the minimum diesel fuel consumption occurred at a water concentration of 15 percent, and the reduction in diesel fuel flow by comparison to test runs during which no water was added was 3.3 percent. Again, a 95 percent confidence exists that the mean values of the samples FIGURE 3-2. FUEL CONSUMPTION, CUMMINS ENGINE, 1200 RPM obtained without water addition and with 15 percent water addition in fact represent different populations. Some data were obtained for evaluation of the effect of water addition on fuel consumption at a speed of 900 rpm and prop load. The results are shown in Figure 3-3, using the same format as that described above. During these tests the reduction in diesel fuel flow was found to be 2.5 percent. For the Detroit Diesel engine, fuel consumption results were obtained at several points along the prop load curve. At the 1000 rpm test point, the body of data was sufficiently extensive to allow statistical analysis; the results are shown in Figure 3-4. For this case, the general tendency was for the water to increase fuel consumption. The same trend was observed for the tests conducted at other speeds; the results are shown in Figure 3-5. No significant improvement in the rate of diesel fuel consumption could be inferred from these tests. The configuration of the Detroit Diesel engine did allow an assessment of the effect of injection timing on the performance of water-in-fuel emulsions. Since the timing change can be effected through an injector adjustment, rather than a camshaft change, it was possible to obtain data at several values of the injection timing. Figure 3-6 describes the relationship between the fuel injector adjustment dimension and injection timing; the standard value for the engine was 2.205 inches. Tests were performed for values of the beginning of injection from about 25° BTDC to about 15° BTDC; the specific dimensions and timing angles are shown in Table 3-1. Most of the tests were performed at 1000 rpm, and examination of Figure 3-7 indicates that the timing change did not affect the relationship between fuel consumption and water addition. One series of tests was performed at 1400 rpm (Figure 3-8); the results again indicate that the timing change did not improve the ability of the engine to benefit from the addition of water to the fuel. In both Figure 3-7 and Figure 3-8, the curves designated as baseline are reproduced from Figures 3-4 and 3-5. FIGURE 3-3. FUEL CONSUMPTION, CUMMINS ENGINE, 900 RPM FIGURE 3-4. FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM FIGURE 3-5. FUEL CONSUMPTION, DETROIT DIESEL ENGINE, FOUR SPEEDS TABLE 3-1. DETROIT DIESEL 12V-149TI ENGINE FUEL INJECTION TIMING | Injector | Timing of | |-------------------------------|---| | Adjustment | Injection | | Dimension | Event | | (inches) | (degrees) | | 2.165 2.185 2.205 2.223 2.235 | 5.5 advance 2.8 advance 0 2.4 retard 4.1 retard | - Chief State Control FIGURE 3-6. FUEL INJECTION TIMING AS FUNCTION OF ADJUSTMENT DIMENSION, DETROIT DIESEL ENGINE, 12V-149TI (180 INJECTORS) 42 FIGURE 3-7. EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1000 RPM FIGURE 3-8. EFFECT OF INJECTION TIMING ON FUEL CONSUMPTION, DETROIT DIESEL ENGINE, 1400 RPM ## 3.2 EXHAUST SMOKE During the performance of the test runs on the Cummins engine, it was observed that the presence of water in the fuel caused a significant percentage reduction in the presence of exhaust smoke. The test results are shown in Figure 3-9 for the test point at 1800 rpm, and in Figure 3-10 for the test run at 1200 rpm. In both cases, it may be observed that the smoke reduction increased as water was added to the fuel. Although the percentage reductions are dramatic, it must be noted that the opacity of the exhaust stream was quite low even without water addition. Therefore, the effect of water addition on smoke reduction is questionable from a practical viewpoint, although the magnitude of the effect is statistically significant. #### 3.3 PARTICULATE EMISSIONS During some of the Detroit Diesel engine tests, measurements were made of the particulate emissions using the procedures outlined in Section 2. A sample of the exhaust was obtained from each of the engine exhaust pipes, diluted with air, and passed through a pre-weighed filter. The difference in filter weights, combined with gas flow measurements, provided an assessment of the particulate loading per standard cubic foot of exhaust. The results obtained from the particulate measurements are shown in Figures 3-11 and 3-12 as a function of both water concentration and engine speed. It may be observed from the data presented that the addition of water to the fuel has no positive effect on the particulate emissions. ## 3.4 OXIDES OF NITROGEN The potential of water addition in terms of reduction of emissions of oxides of nitrogen from an operating engine was of particular interest at the outset of the program; other investigators have suggested that the use of water-in-fuel emulsions can provide a significant change in the emission levels of this particular contaminant. FIGURE 3-9. EXHAUST SMOKE, CUMMINS ENGINE, 1800 RPM FIGURE 3-10. EXHAUST SMOKE, CUMMINS ENGINE, 1200 RPM FIGURE 3-11. EXHAUST PARTICULATE EMISSIONS AS FUNCTION OF PERCENT WATER, DETROIT DIESEL ENGINE FIGURE 3-12. EXHAUST PARTICULATE EMISSIONS AS FUNCTION OF ENGINE SPEED, DETROIT DIESEL ENGINE For the Cummins engine, the results of the testing program are summarized in Figure 3-13 for the 1800 rpm test point, and in Figure 3-14 for the 1200 rpm test point. Neither case allows the inference of a reduction in emissions of oxides of nitrogen as phrased in terms of nitric oxide concentrations. In fact, the results at 1800 rpm suggest that water addition did in fact increase the nitric oxide emissions. This result is due in part to a unique characteristic of the cummins fuel injection system. The PT system utilized on the test engine provides for the end of fuel injection at a fixed crank angle location. In other words, the fuel injection event ends at the same point during each engine cycle regardless of the quantity of fuel supplied to the injector. An increase in liquid volume, such as that obtained by the addition of water to the fuel, results in an advance of the point at which injection begins. Thus, the injection event begins earlier in the engine cycle as water is added to the fuel. The effect of injection advance on emissions of oxides of nitrogen is well documented; in general, injection advance tends to increase the emissions of this substance. It is likely, therefore, that the effect of the injection advance offset the tendency toward NO reduction afforded by the presence of water, and the result was the observed constancy or slight
increase of nitric oxide levels. Some specific experiments were performed to assess the degree of injection advance associated with the addition of water to the fuel. Through the use of a strain-gauged component in the injection linkage, a signal was obtained that allowed display of the injection event on an oscilloscope. A series of tests was performed at the 1800 rpm test point; the results are shown in Figure 3-15. The injection event is defined by the point indicated. It may be observed that as the water concentration increases the point at which injection begins tends to advance with respect to the top dead center position. From evaluation of the oscilloscope photographs, it was determined that an injection advance of approximately one degree could be associated with the addition of each five percent water added to the fuel. Emissions of oxides of nitrogen for the tests of the Detroit Diesel engine are summarized in Figure 3-16; the effect is similar to that observed for the FIGURE 3-13. EMISSIONS OF NITRIC OXIDE, CUMMINS ENGINE, 1800 RPM Note: Each major vertical division represents ten degrees. FIGURE 3-15. TIMING OF THE BEGINNING OF FUEL INJECTION, CUMMINS ENGINE FIGURE 3-16. EMISSIONS OF OXIDES OF NITROGEN, DETROIT DIESEL ENGINE, FIVE SPEEDS Cummins engine. The emissions increase as the load increases; this result is the usual consequence of increased cycle temperatures. Although some reductions seem to occur at low rpm (800 and 1000) and high water concentrations, in general, the addition of water does not appear to be effective for the reduction of emissions of oxides of nitrogen at any concentration examined during these tests. The explanation used for the lack of influence of water addition on emissions of oxides of nitrogen for the Cummins engine is not applicable in this case; increased liquid quantities do not affect the timing of the beginning of injection for the Detroit Diesel engine. Two mechanisms may be postulated for the control of emissions of oxides of nitrogen through water addition. First, the water tends to absorb energy from the combustion process, and lower peak cycle temperatures might be attained. In addition, the presence of water tends to increase the ignition delay period; the net effect in this case would be a retarded combustion event. Since both cycle temperature reduction and retarded injection timing have previously been demonstrated as effective control techniques, it would appear that water addition should provide the desired results. However, the data obtained during this program indicate that, if the mechanisms described were operative, they were not sufficient in magnitude to provide effective control. In other words, at the water concentration levels employed and at the engine power levels utilized, the ignition delay increase and the cycle temperature decrease were not sufficient to cause an appreciable decrease in the emissions of oxides of nitrogen. ## 3.5 UNBURNED HYDROCARBONS Unburned hydrocarbons are another exhaust contaminant of particular interest in engine exhaust streams. In general, it has been found that the presence of water in the fuel tends to increase the occurrence of unburned hydrocarbons in the exhaust due to a reduction in the cycle temperatures. The hydrocarbon results for the Cummins engine are shown in Figures 3-17 and 3-18 for the test points at 1800 rpm and 1200 rpm. The effect of water addition FIGURE 3-17. EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1800 RPM FIGURE 3-18. EMISSIONS OF UNBURNED HYDROCARBONS, CUMMINS ENGINE, 1200 RPM is largely inconclusive at 1800 rpm; at 1200 rpm an increase in hydrocarbons may be observed. Again, it is likely that the effect of injection advance counteracted the effect of the presence of water to some extent. For the Detroit Diesel engine, the values of unburned hydrocarbon emissions are shown in Figure 3-19. The magnitudes of the emission levels are higher than those observed for the Cummins engine; this result is not unusual for comparisons between four-stroke cycle and two-stroke cycle engines. The presence of water in the fuel appears to yield an increase in hydrocarbon emissions; the levels associated with five percent water concentration are increased by about thirty percent compared to the baseline values. Water concentrations above five percent, however, had little additional effect on hydrocarbon emissions. ## 3.6 CARBON MONOXIDE Carbon monoxide is a contaminant of the same character as unburned hydrocarbons in that both substances occur as a result of incomplete oxidation of the fuel. The situations that cause high hydrocarbon emissions typically cause high carbon monoxide emissions in addition. For the Cummins engine, it may be observed in Figures 3-20 and 3-21 that the character of the carbon monoxide emissions for these tests is similar to that for the emissions of unburned hydrocarbons. The results at 1800 rpm do not indicate a significant change in carbon monoxide emissions, and a moderate increase is apparent for the 1200 rpm test point at the high water concentration. For the Detroit Diesel engine, the emissions of carbon monoxide are described in Figure 3-22. The results for 1200 rpm suggest a small influence of water concentration on carbon monoxide emissions. At speeds below 1200 rpm, an increasing tendency toward higher emissions may be observed, while an increasing tendency toward emission reduction can be associated with speeds above 1200 rpm. An explanation of this trend may be postulated in terms of the effect of water addition on the ignition delay of the fuel and on the mixing of fuel and air within the cylinder. At the low speeds, the effect of the EMISSIONS OF UNBURNED HYDROCARBONS, DETROIT DIESEL ENGINE, FIGURE 3-19. FIVE SPEEDS FIGURE 3-20. EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1800 RPM FIGURE 3-21. EMISSIONS OF CARBON MONOXIDE, CUMMINS ENGINE, 1200 RPM FIGURE 3-22. EMISSIONS OF CARBON MONOXIDE, DETROIT DIESEL ENGINE, FIVE SPEEDS addition of water on the ignition delay might be sufficient to cause increased emissions of carbon monoxide, although no effect on emissions of hydrocarbons and oxides of nitrogen was discernible. It may be more appropriate to examine the carbon monoxide emissions from the Detroit Diesel engine in the context of mixing within the engine cylinder. During the 800 rpm tests, the fuel rate was quite small at the prop load condition. The addition of an inert component to the fuel stream would tend to diversify the jet of injected fuel with respect to the interior of the cylinder; the local fuel-air ratio in the vicinity of a fuel droplet would tend to become leaner. Since successful combustion depends upon ignition at points within the chamber and subsequent mixing of burning and unburned materials, it is possible that the addition of water allowed portions of the charge to escape complete inflammation. At the higher fuel rates, this effect of water addition would be reduced, and the effect of water addition on carbon monoxide emissions would be reduced. This argument does not explain the high carbon monoxide levels at the 1600 rpm test point; the baseline carbon monoxide emissions at that point seem uncharacteristically high. Since the fuel-air ratio at this point is well within customary limits for good combustion, poor mixing of air and fuel could be the cause of poor combustion. It is possible that the injection of an increased volume of liquid allowed improved penetration of the fuel injection jet, and increased mixing caused a reduction in carbon monoxide levels to values typical of lower speeds. #### 3.7 CARBON DIOXIDE AND OXYGEN The emissions of carbon dioxide and oxygen are recorded in the test data shown in Appendix C. These substances, although not regulated contaminants, are of interest in the generalized context of engine testing. The carbon dioxide measurement is particularly important to carbon balance fuel-air ratio calculations, and results for these estimates have been presented in Figure 2-14. # 4. SUMMARY AND CONCLUSIONS During the testing program described by this document, Cummins and Detroit Diesel engines representative of USCG main propulsion units were operated under loading conditions typical of marine service using water-in-fuel emulsions having various concentrations. Measurements of engine performance and emissions were obtained in an effort to define optimum points for further exploitation of the benefits of emulsified fuels. The engines were evaluated on a laboratory test bed that included a dynamometer capable of absorbing the maximum engine output. Instrumentation was provided to allow measurement of speed, load, and pertinent temperatures and pressures throughout the installation. Fuel was supplied through a system capable of blending water with diesel fuel in amounts up to 25 percent of the total volume of liquid supplied to the engine; fuel not used by the engine was cooled and recycled through the blending system. No surfactants or stabilizers were employed. A Gaulin "Hydroshear" emulsifier was used to accomplish the mixing of fuel and water, and visual observation of samples obtained from various points suggested that separation of fuel and water did not occur within the fuel system. The fuel consumption measurements were performed using a direct weight method. Measurements of gaseous exhaust emissions were obtained for both engines using instruments appropriate to the type and level of the individual contaminant substances. In addition, a dilution tunnel was used to measure particulate emissions from the Detroit Diesel engine, and exhaust smoke measurements were obtained for the Cummins engine. Data from cutter logs were used to define the prop load test points of particular interest for the Cummins engine, and tests were repeated several times for those points in order that a statistical basis for the results could be constructed. For the Detroit Diesel engine, tests were performed at more
points along the prop load curve, but the repetition of tests was less extensive. The fuel consumption tests for the Cummins engine suggested that diesel fuel savings averaging two to three percent could be obtained using emulsion concentrations of fifteen to twenty percent water. No significant fuel saving could be associated with the use of emulsions in the Detroit Diesel engine. Since the laboratory test conditions were generally more favorable than those that would prevail in actual marine use, it is necessary to conclude that the use of water-in-fuel emulsions would not be beneficial to USCG operations. Measurements of exhaust smoke were performed for the Cummins engine, and particulate emissions were measured for the Detroit Diesel engine. Although dramatic reductions in exhaust plume opacity were observed, the smoke levels for engine operation without water addition were not excessive. Thus, although the data suggest that water-in-fuel emulsions could be used for smoke control, the observation of excessive smoke at any operating point other than full rated load is probably indicative of defective engine components or poor adjustment of engine systems, and smoke control should be effected through correction of those conditions. The addition of water to the fuel did not have a significant effect on the emission of exhaust particulates, although the Detroit Diesel engine was generally insensitive to the presence of water at all test points. In terms of gaseous exhaust emissions, the expected effects of water addition were not generally observed. The addition of water to the fuel should yield an increase in the emissions of oxides of nitrogen. Although some trends toward these effects could be observed in the test results, no definitive conclusions can be drawn concerning the effect of water addition on emissions. From a theoretical viewpoint, the addition of water to diesel fuel can result in a mixture which would exhibit unique properties at the onset of combustion. Specifically, it is believed that the vaporization of the water phase causes a "micro-explosion" that is capable of shattering a fuel droplet; the result of this process would be improved mixing of fuel and air and enhanced combustion quality. In addition to improving combustion in a diesel engine, the presence of water in the fuel should lower combustion temperatures, and emissions of unburned hydrocarbons and carbon monoxide should increase. Also, the lower temperature and an increase in the ignition delay period should reduce the emissions of oxides of nitrogen. The micro-explosion phenomenon has been demonstrated for burning of single droplets, and the addition of water to fuel has been suggested for application to a wide range of combustion processes. 2,3,4,5,6 Several investigators have obtained encouraging test results using water-in-fuel emulsions in diesel engines; 1,6,7,8 others have been less successful in demonstrating benefits associated with the emulsion use. 9,10 The basic engine configuration apparently affects the results; four-stroke cycle engines have generally produced more noticeable effects. During the present study, all of the observations were macroscopic in nature, and no attempt was made to observe the details of emulsion quality or the micro-explosion event. However, the tests were performed in such a way that the effects of emulsions on engine performance would be revealed. For the four-stroke cycle (Cummins) engine, the observed reductions in fuel consumption and exhaust stream opacity are indicative of improved mixing between the fuel spray and the air charge within the combustion chamber. The results for unburned hydrocarbons and carbon monoxide were inconclusive, and the emissions of oxides of nitrogen were probably affected by the change in injection timing due to increased fuel quantity. Thus, some evidence can be associated with support of the micro-explosion theory, although the effects were not sufficiently large to be of practical interest. In the case of the two-stroke cycle (Detroit Diesel) engine, no improvement in fuel consumption or particulate emissions could be observed. Some indication of mixing quality could be inferred from the data on carbon monoxide emissions, but the presumed micro-explosion effects could not be separated from alterations of the fuel spray due to increased injection quantity. In general, the two-stroke cycle engine was quite tolerant of, and insensitive to, the addition of water to the fuel. This result is consistent with the observations of other investigators; for example, some observers have found that water concentrations exceeding 40 percent were necessary to obtain significant changes in engine performance. 11 Such water concentrations lie beyond the range of practical interest for USCG operations. Both the data obtained during this study and the results reported by other investigators indicate that the effect of water-in-fuel emulsions on engine performance is dependent upon the engine system configuration. Although inferences can be drawn from the body of accumulated information, it is not possible, as yet, to predict the response of an untested engine to the addition of water to the fuel. Additional information must be obtained to define the specific mechanisms which are operative and the effect that these mechanisms exert on the combustion process. It is possible that further investigation would reveal significant differences between techniques for the production of water-in-fuel emulsions, both in the microstructure of the emulsion product and in the effect on engine operation. Aside from the assurance of a stability sufficient for transit through the fuel system, this study did not address the details of emulsion production. An investigation of the effects of different production techniques, if attempted, should be closely coupled with a study designed to reveal the dominant mechanisms of combustion process control. # RECOMMENDATIONS On the basis of the results obtained during this study, it is recommended that no future effort be directed toward the use of water-in-fuel emulsion in 85 foot and 95 foot WPB class cutters. Although a small fuel consumption benefit was observed for the Cummins engine in a laboratory environment, it is unlikely that a benefit of 2-3 percent could be translated to field use. The use of water-in-fuel emulsions for smoke control is possible for the Cummins engine, but emulsion use should not be pursued as a control strategy. Excessive smoke at conditions other than engine rated speed and load is indicative of a hardware failure or poor control system adjustment, and correction of the defect is indicated in preference to an auxiliary control strategy. The data obtained on the Cummins and Detroit Diesel engines do not preclude the successful use of emulsions in other USCG power units. If emulsions are candidates for application to, for example, larger medium-speed diesel engines, then specific tests should be conducted to determine the response of those engines to the presence of water in the fuel system. Additional basic work will be required in order to formulate general statements concerning the necessary properties of emulsions and the effect of those emulsions on engine performance. While the execution of this basic work is beyond the scope of USCG interests, it is recommended that performance of the basic research efforts be encouraged. Until the general results for emulsion use are understood and documented, tests of specific enginemulsification system combinations will be necessary for the assessment of practicality. APPENDIX A FUEL PROPERTIES AND ENGINE DATA TABLE A-1. FUEL ANALYSIS DATA | | | | · | |--|--|---|---| | PROPERTY | CUMMINS
TESTS
RUNS 171-282 | DETROIT
DIESEL TESTS
RUNS 1-106 | DETROIT
DIESEL TESTS
RUNS 107-150 | | Heat of Combustion (BTU/LB) | 20,038 | 20,050 | 19,400 | | Hydrogen (% by Weight) | 12.83 | 12.92 | 13.52 | | Carbon (% by Weight) | 85.75 | 84.71 | 84.31 | | Oxygen (% by Weight) | 2.37 | 1.60 | 0.96 | | Nitrogen (% by Weight) | 0.68 | 0.77 | 0.48 | | Sulfur (% by Weight | 0.18 | 0.12 | 0.075 | | API Gravity at 60°F | 35.3 | 33.9 | 35.1 | | Reid Vapor Pressure | 1.78 | 2.60 | 0.31 | | Cetane Number (Calc.) | 47.5 | 49.7 | 50.6 | | Flash Point (°F) | 147 | 163 | 162 | | Viscosity (centistokes) | | | | | 50°F
100°F
150°F
210°F | 4.91
2.59
1.61
1.07 | 7.30
3.55
2.18
1.35 | 5.51
3.14
1.95
1.26 | | Distillation | | | | | IBP (°F) 10% (°F) 20% (°F) 30% (°F) 40% (°F) 50% (°F) 60% (°F) 70% (°F) 80% (°F) 90% (°F) 95% (°F) EP (°F) Recovery (%) Residue (%) Loss (%) | 360
420
446
464
481
499
514
533
552
581
606
630
98.5
1.5
0.0 | 387
463
489
505
520
534
549
568
595
640
682
714
96.75
1.25
2.00 | 385
446
473
482
507
522
536
554
579
621
657
700
98
2 | TABLE A-2. MARINE ENGINE PERFORMANCE CURVE - 1. GROSS BRAKE HORSEPOWER. - NET HORSEPOWER WITH REVERSE REDUCTION GEAR, GENERATOR AND RAW WATER PUMP. - 3. HYPOTHETICAL PROPELLER POWER CURVE (3.0 EXPONENT). - 4. FUEL CONSUMPTION FOR NET SHAFT HORSEPOWER. - 5. FUEL CONSUMPTION FOR HYPOTHETICAL PROPELLER. The above curves are based on 500 ft. altitude (29.38" HG.) and 85°F intake air temperature; fuel consumption curves are based on fuel weight of 7.0 lb/US gal. Manufacturer's data for Model VT12-900M engine (turbocharged-aftercooled, 12 cylinders, 1710 cu. in.
displacement, with 5-1/2 in. bore and 6 in. stroke, military version). TABLE A-3. ESTIMATED PERFORMANCE SERIES V-149TI MARINE 16V-149TI CREW BOAT, JACKET WATER INTERCOOLER, 150 INJECTORS # APPENDIX B SAMPLE CALCULATIONS During each individual test run, engine data were entered on a permanent record sheet. The data items that were recorded are listed in Table B-1 along with the numerical values associated with run number 235 for the Cummins engine; the sample calculations which follow will be based upon the numerical values shown. The differences between the data items recorded for the Cummins and Detroit Diesel engines were minor. The Detroit Diesel engine was equipped with four turbochargers; therefore, the number of turbocharger-related temperatures and pressures was doubled by comparison with the Cummins engine. Also, air box pressure, rather than fuel rail pressure, was recorded for the Detroit Diesel engine. Recorded engine test data were entered into a computer program, and several calculation routines were executed. The following discussion describes the details of the calculation procedure, and the numerical values for Cummins run number 235 are presented as an example. ### **Humidity Calculations** The air supplied to the engine contained some moisture, and the further addition of water to the fuel affected the exhaust moisture. The following equation was used for the calculation of the saturation vapor pressure of water: 12 $$P_{B} = \exp \left[B \ln T + \sum_{i=0}^{9} F_{i} T^{i-2} \right], \qquad (1)$$ CHARLEST CARRESTS THE where P_R = saturation vapor pressure, pascals T = temperature, °K B = -12.150799 $F_0 = -8.49922 \times 10^3$ $F_1 = -7.4231865 \times 10^3$ $F_2 = 96.1635147$ TABLE B-1. TEST DATA | Date: 24 July 1979 | Value for
Cummins | | |---------------------------------------|----------------------|--------| | Data Item | Run 235 | | | | 1 | | | Dynamometer Constant | - | 3000 | | Nominal Water Concentration | Percent | 20 | | Barometric Pressure | Inches - Hg | 29.03 | | Wet Bulb Temperature | °F | 77 | | Dry Bulb Temperature | °F | 87 | | Engine Hour Meter | Hours | 5222.3 | | Engine Speed | RPM | 1800 | | Ream Load | Pounds | 718 | | Coolant Inlet Temperature | °F | 175 | | Coolant Outlet Temperature | °F | 186 | | Oil Sump Temperature | °F | 219 | | Fuel Temperature at Emulsifier | °F | 112 | | Diesel Fuel Inlet Temperature | °F | 95 | | Return Fuel Temperature | °F | 151 | | Return Fuel Temperature After Cooler | °F | 113 | | Intake Air Temperature | °F | 90 | | Exhaust Stack Temperature (Left) | °F | 762 | | Exhaust Stack Temperature (Right) | °F | 777 | | Turbine Inlet Temperature (Left) | °F | 905 | | Turbine Inlet Temperature (Right) | °F | 917 | | Compressor Outlet Temperature (Left) | °F | 224 | | Compressor Outlet Temperature (Right) | °F | 222 | | Charge Air Temperature (Left) | °F | 189 | | Charge Air Temperature (Right) | °F | 189 | | Tap Water Inlet Temperature | °F | 101 | | Cell Air Temperature | °F | 91 | | Engine Oil Pressure | psi | 76 | | Fuel Rail Pressure | psi | 96 | TABLE B-1. TEST DATA, continued | Data Item | Units | Value For
Cummins
Run 235 | |-------------------------------------|----------------------|---------------------------------| | Boost Pressure (Right) | psi | 9.9 | | Boost Pressure (Left) | psi | 10.0 | | Turbine Inlet Pressure (Left) | psi | 9.0 | | Turbine Inlet Pressure (Right) | psi | 10.0 | | Inlet Vacuum | In. H ₂ O | 13.9 | | Exhaust Pressure (Right) | Inches - Hg | 0.2 | | Exhaust Pressure (Left) | Inches - Hg | 0.5 | | Pressure Drop, LFE Filter | In. H ₂ O | 5.40 | | Pressure Drop, Laminar Flow Element | In. H ₂ O | 4.25 | | Exhaust Temperature, Cylinder 1R | °F | 905 | | Exhaust Temperature, Cylinder 2R | °F | 890 | | Exhaust Temperature, Cylinder 3R | °F | 897 | | Exhaust Temperature, Cylinder 4R | °F | 873 | | Exhaust Temperature, Cylinder 5R | °F | 890 | | Exhaust Temperature, Cylinder 6R | °F | 898 | | Exhaust Temperature, Cylinder 1L | °F | 939 | | Exhaust Temperature, Cylinder 2L | °F | 913 | | Exhaust Temperature, Cylinder 3L | °F | 880 | | Exhaust Temperature, Cylinder 4L | ° _F | 882 | | Exhaust Temperature, Cylinder 5L | °F | 892 | | Exhaust Temperature, Cylinder 6L | ° _F | 904 | | Water Flowmeter 1, Glass Float | mm | 150+ | | Water Flowmeter 2, SS Float | mm | 115 | | Water Flowmeter 3, SS Float | mm | 0 | | Fuel Pressure, Tank | psi | 20 | | Pressure, Emulsifier Inlet | psi | 100 | | Pressure, Fuel at Engine | psi | 1.6 | | Water Supply Pressure | psi | 65 | | Emission Concentrations | | | | Hydrocarbons | ppmc | 56 | | Carbon Monoxide | ррш | 148 | TABLE B-1. TEST DATA, continued | Data Item | Units | Value For
Cummins
Run 235 | |------------------------|---------|---------------------------------| | Nitric Oxide | ppm | 773 | | Oxides of Nitrogen | ppm | 770 | | Carbon Dioxide | Percent | 7.8 | | Oxygen | Percent | 12.8 | | Smoke | Percent | 3.3 | | Fuel Flow Measurements | Pounds | 5.0 | | Times: 1 | sec | 102.3 | | 2 | sec | 102.6 | | 3 | sec | 102.4 | | 4 | sec | 102.7 | | | | | F_3 = 2.4917646 x 10⁻² F_4 = -1.3160119 x 10⁻⁵ F_5 = -1.1460454 x 10⁻⁸ F_6 = 2.1701289 x 10⁻¹¹ F_7 = -3.610258 x 10⁻¹⁵ F_8 = 3.8504519 x 10⁻¹⁸ F_9 = -1.4317 x 10⁻²¹. Application of this equation to the dry and wet bulb temperatures for run 235 yields the following: $$P_{WB}$$ = 3168.62 pascals (at 298.15°K) P_{DR} = 4382.41 pascals (at 303.71°K). The vapor pressure at the wet bulb temperature was obtained from "Ferrels equation", $$P_V = P_{WB} - 0.000660 (T_{DB} - T_{WB}) P_{BARO} [1 + 0.0015 (T_{WB} - 273.15)],$$ (2) where P_V = vapor pressure, pascals T_{DB} = dry bulb temperature, ${}^{\circ}K$ TWB = wet bulb temperature, °K P_{BARO} = barometric pressure, 98307.2 pascals. Using this relationship, the vapor pressure was found to be $$P_V = 2797.50 \text{ pascals}.$$ The relative humidity, by definition, was calculated as: RH = $$\frac{P_V}{P_{DR}} \times 100 = 63.8\%$$, (3) and the specific humidity was calculated from: $$H = \frac{(K)(^{P}V)}{P_{BARO} - P_{V}}, \qquad (4)$$ where H = specific humidity, gm H_2O/gm dry air K = 0.6220 gm H_2O/gm dry air, for the test case, $H = 0.0182 \text{ gm H}_2\text{O/gm dry air}$ (or pounds moisture/pound dry air). The volume concentration of the water vapor was calculated on a dry basis as: $$Y = \frac{(H)(MAIR)}{MH_{2}O} = 0.0293,$$ (5) where Y = water vapor volume concentration MAIR = molecular weight of air = 28.9645 M_{H_2O} = molecular weight of water = 18.01534/ #### Water Flow Rate Calculations Although a nominal water concentration was associated with each test run, the actual flow to the engine fuel system was measured using variable area flowmeters. The flowmeters were calibrated with water prior to the initiation of testing, and a fifth order curve was fitted to the calibration data. Two flowmeters were utilized, and one of the two units contained two floats; thus three calibrated flow ranges were available. The matrix of flowmeter constants is shown in Table B-2. The water flow determination was based upon the flow range most applicable to the particular test run; the procedure was WFR = $$W_1 + W_2(X) + W_3(X^2) + W_4(X^3) + W_5(X^4) + W_6(X^5)$$, (6) where WFR = water flow rate, cc/min TABLE B-2. WATER FLOWMETER CURVE COEFFICIENTS | | Meter 1
Glass Float | Meter l
Stainless Steel Float | Meter 2
Stainless Steel Float | |----------------|-------------------------------|----------------------------------|----------------------------------| | W ₁ | 0.1124503×10^2 | -0.3398302×10^{1} | 0.1701297 x 10 ¹ | | W ₂ | -0.1180202 x 10 ¹ | 0.8969192 | 0.7123502 | | W ₃ | 0.6830435×10^{-1} | 0.7994353×10^{-1} | 0.1005951 | | W4 | $-0.7587800 \times 10^{-3}$ | $-0.1017442 \times 10^{-2}$ | $-0.1434834 \times 10^{-2}$ | | W ₅ | 0.3808533×10^{-5} | 0.5968658×10^{-5} | 0.8912745 x 10 ⁻⁵ | | W6 | -0-6943106 x 10 ⁻⁸ | $-0.1340098 \times 10^{-7}$ | -0.2025536 x 10 ⁻⁷ | W = calibration coefficient, Table B-2 X = flowmeter scale reading, mm. The calculated water flow rate was utilized in subsequent calculations for the measured water concentration and the corrected exhaust humidity. For the example situation (run 235), the water flow rate was: WFR = $$384 \text{ cc/min}$$. # Engine Performance Calculations The observed brake horsepower was calculated from the engine speed and load: $$BHP = \frac{(N)(L)}{K}, \qquad (7)$$ where BHP = brake horsepower N = engine speed, rpm L = dynamometer beam load, pounds K = dynamometer constant = 3000 for Cummins tests = 2000 for DDAD runs 1 - 106 = 3000 for DDAD runs 107 - 150. For the case of Cummins run 235, BHP = $$\frac{(1800)(718)}{3000}$$ = 431. The observed torque was obtained from $$T = \frac{(5252)(L)}{K} = 1257 \text{ lb. ft.},$$ (8) where T = torque, 1b. ft. L = beam load, 1b. ### K = dynamometer constant. Correction factors for the observed engine performance were developed on the basis of atmospheric conditions. ¹³ The dry barometric pressure was calculated from $$P_{B, DRY} = P_{BARO} - \frac{P_{V}}{K_{P}} = 28.20 \text{ in. Hg},$$ (9) where $P_{B, DRY}$ = dry barometric pressure, in. Hg Kp = 3386.4 pascal/in. Hg. the value of the correction factor was then obtained $$c_{D} = \left(\frac{29.00}{P_{B}, DRY}\right) \left(\frac{T_{test}}{545}\right)^{0.7}, \tag{10}$$ where C_D = correction factor t_{test} = intake air absolute temperature, °R. For the specific test case, $$C_{\rm D} = \left(\frac{29.00}{28.20}\right) \left(\frac{90 + 460}{545}\right)^{0.7} = 1.035,$$ therefore, the corrected horsepower was $$CBHP = (431)(1.035) = 446.$$ The mean effective pressure is a useful parameter that describes engine output per unit area of piston surface. In the calculation routine, values were obtained from the relationship bmep = $$\frac{K_{m} (CBHP)}{(D)(N)}$$ = 115, (11) where bmep * brake mean effective pressure, psi K_m = constant, 792,000 for
4-stroke cycle 396,000 for 2-stroke cycle D = engine displacement, cubic inches = 1710 for Cummins engine = 1788 for Detroit Diesel engine N = engine speed, rpm. # Air Flow Calculations During the Cummins engine tests, the air flow to the engine was measured using a Meriam Laminar Flow Element. During test runs, the pressure drop across the element, the pressure drop across the filter, and the temperature of the incoming air were recorded. The volume flow rate was obtained from a curve fitted to the flow element calibration curve by means of the following relationship: $$CFM = AC + BC (dp) + CC (dp)^2 + DC (dp)^3,$$ (12) where CFM = volume flow, cubic feet per minute dp = pressure drop across element, inches of water AC = 0.0 BC = 298.825 CC = 5.88898 DC = 0.19913. For the example calculation, it may be observed that CFM = 1179. Two correction factors were used to adjust the volume flow rate to the calibration basis of standard cubic feet per minute. The pressure correction was $$PCF = \frac{P_{BARO} - (dp \ filter)(0.07355)}{29.92} = 0.957,$$ (13) where PCF = pressure correction factor dp filter = pressure drop across filter, inches of water. The correction for temperature was obtained from a curve fitted to data supplied with the instrument (Table B-3). 14 $$TCF = X_1 + X_2(T_1) + X_3(T_1)^2 + X_4(T_1)^3 = 0.937,$$ (14) where TCF = temperature correction factor T₁ = inlet air temperature, °F $x_1 = 1.28345$ $X_2 = -0.0048289$ $X_3 = 1.227782 \times 10^{-5}$ $X_4 = -1.618912 \times 10^{-8}$. The air mass flow rate was then established in terms of air density at the calibration condition $(70^{\circ}F)$ as: AMF = $$(CFM)(PCF)(TCF)(\rho s) = 79.2,$$ (15) where AMF = air mass flow, pounds per minute ρ s = density of air at 70°F and 29.92 inches of mercury, pounds per cubic foot. The air flow rate was adjusted using the previously calculated moisture concentration: $$DAMF = AMF (1.0 - H), \qquad (16)$$ · similar income where DAMF = mass flow rate of dry air, pounds per minute H = moisture, pounds water per pound dry air. For the example calculation, DAMF = 79.2 (1.0 - 0.0182) = 77.8. # TABLE B-3. AIR TEMPERATURE CORRECTION FACTORS # AIR TEMPERATURE CORRECTION FACTORS FOR SCFM AIR BASE TEMPERATURE 70°F, VISCOSITY 181.87 MICROPOISE REFERENCE NBS CIRCULAR 564 CORRECTION FACTOR = 529.67 459.67+°F × 181.87 µg* | | | μg * \ | Viscosity o | f Air at flow | ving temper | ature | | | | | |------------------------|--------|---------------|-------------|---------------|-------------|--------|--------|--------|--------|--------| | ТЕМР
^О F | +0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | | 50 | 1.0707 | 1.0670 | 1.0633 | 1.0596 | 1.0559 | 1.0523 | 1.0487 | 1.0451 | 1.0415 | 1.0379 | | 60 | 1.0344 | 1.0303 | 1.0273 | 1.0238 | 1.0204 | 1.0169 | 1.0135 | 1.0101 | 1.0067 | 1.0033 | | 70 | 1.0000 | .9966 | .9933 | .9900 | . 9867 | . 9834 | . 9802 | . 9770 | .9737 | . 9705 | | 80 | .9674 | .9642 | .9611 | .9579 | . 9548 | . 9517 | . 9486 | . 9456 | . 9425 | ردوو. | | 90 | . 9365 | .9335 | .9305 | .9275 | .9246 | .9216 | .9187 | .9158 | .9129 | 9100 | | 100 | . 9072 | .9043 | .9015 | . 8987 | .8959 | .8931 | . 8903 | . 8875 | .8848 | .8820 | | 110 | .8793 | .8766 | .8739 | .8712 | .8686 | .8659 | .8633 | . 8606 | . 8580 | .8554 | | 120 | .8528 | .8503 | . 8477 | .8452 | .8426 | .8401 | .8376 | .8351 | .8326 | . 8301 | | 130 | . 8276 | .8252 | . 8227 | .8203 | .8179 | .8155 | .8131 | .8107 | .8083 | .8060 | | 140 | . 8036 | .8013 | . 7990 | . 7966 | .7943 | . 7920 | . 7898 | . 7875 | . 7852 | .7-30 | | 150 | . 7807 | . 7755 | . 7763 | . 7741 | .7713 | .7697 | . 7675 | . 7653 | . 7632 | .76+3 | ### Fuel Flow Calculations During each test run, several measurements of the mass flow rate of diesel fuel were performed. The determinations were made by observing the time required for consumption of a known mass of fuel from a container on a scale; the fuel masses were varied to permit time measurements on the order of two minutes. Each fuel mass flow rate was calculated, and an average was obtained. For the case of Cummins run 235, the following data apply: | Observation | 1_ | 2 | _3_ | _4 | |----------------------------|--------|------------|------------|--------| | Fuel mass, pounds | 5.0 | 5.0 | 5.0 | 5.0 | | Time, seconds | 102.3 | 102.6 | 102.4 | 102.7 | | Fuel rate, pounds per hour | 175.95 | 175.44 | 175.78 | 175.27 | | Average Fuel Rate | = F = | 175 61 pou | nde ner ho | 117 | The brake specific fuel consumption was calculated from the average fuel rate and the corrected brake horsepower: BSFC = $$\frac{F}{CBHP}$$ = 0.3939 pounds fuel per brake horsepower hour. (17) As a consequence of the fuel and air flow determinations, the observed fuelair ratio was calculated: $$\left(\frac{F}{A}\right)_{MEAS} = \frac{F}{(DAMF)(60)} = 0.0376. \tag{18}$$ In order to obtain the fuel volume flow rate, a hydrometer measurement of the API gravity of the fuel was obtained and corrected to $60^{\circ}F$ through the use of ASTM IP Table $5.^{15}$ The value at $60^{\circ}F$ was then used in the context of ASTM IP Table 3^{15} to determine the specific gravity of the fuel; for the test case, the specific garvity of the fuel at $60^{\circ}F$ compared to water at $60^{\circ}F$ was: $$SG_{60/60} = 0.8483$$, the fuel density was then calculated as $$\rho_{\text{fuel}} = (\rho_{\text{water}}) (SG_{60/60}) \left(\frac{\text{ft}^3}{1728 \text{ in}^3} \right) \left(\frac{231 \text{ in}^3}{\text{gallon}} \right) = 7.074, \quad (19)$$ where ρ_{fuel} = fuel density, pounds per gallon ρwater = density of water at 60°F = 62.38 pounds per cubic foot A temperature correction for the difference between the $60^{\circ}F$ standard and the observed fuel temperature was established from ASTM IP Table 6^{-15} and using the $60^{\circ}F$ value of the API gravity. Values of the volume reduction factor were selected from the table for the temperature range $60^{\circ}F - 120^{\circ}F$, and a curve was fitted to the data. The temperature correction was: $$TF = Z_1 + Z_2(T_f) + Z_3(T_f)^2 + Z_4(T_f)^3, \qquad (20)$$ where TF = temperature correction factor for fuel volume T_f = fuel temperature, °F $Z_1 = 0.102678 \times 10$ $Z_2 = -0.446429 \times 10^{-3}$ $Z_3 = -0.14715 \times 10^{-12}$ $Z_4 = 0.10462 \times 10^{-14}$ for the example case of run 235, TF = 0.9844. The fuel density at the test condition was, therefore, $\rho_{ft} = (7.074)(TF) = 6.963$ pounds per gallon, and the fuel volume flow rate was $$V_F = \frac{(F)(A)}{(\rho_{F+})(B)} = 1591,$$ (21) where V_F = fuel volume flow rate, cc per minute A = conversion factor, 3785 cc per gallon B = conversion factor, 60 minutes per hour. As a result of the fuel volume flow determination, the water concentration in the fuel mixture was calculated: $$W = \frac{WFR}{WFR + V_F} \times 100 = 19.4\%,$$ (22) where W = water concentration, percent WFR = water flow rate, cc per minute V_F = fuel flow rate, cc per minute. In order to facilitate subsequent calculations, the water content of the exhaust was modified to include the water introduced with the fuel along with the water entrained in the inlet air. Assuming a density of one gram per cubic centimeter for water, $$WF = \frac{WFR}{453.6} = 0.8466, \qquad (23)$$ where WF = water flow rate, pounds per minute WFR = water flow rate, cc per minute, then, $$PR = \frac{WF}{DAMF} = 0.0109,$$ (24) where PR = moisture added with fuel, pounds water per pound dry air and $$H' = H + PR = 0.0217,$$ (25) where H' = specific humidity of exhaust, pounds water per pound dry air. The corrected volume concentration was $$Y' = \frac{(H')(MAIR)}{MH_{20}} = 0.0349.$$ (26) # Exhaust Calculations From the fuel analysis data shown in Appendix A, the hydrogen/carbon ratio of the fuel was calculated as follows: HCR = $$\left(\frac{\text{HD}}{\text{CA}}\right)\left(\frac{\text{M}_{\text{C}}}{\text{M}_{\text{H}}}\right)$$ = 1.78, (27) where HCR = fuel hydrogen/carbon ratio HD = 12.83 = hydrogen content, percent by weight CA = 85.75 = carbon content, percent by weight $M_C = 12.001 = molecular weight of carbon$ $M_{\rm H}$ = 1.008 = molecular weight of hydrogen. The concentrations of various exhaust constituents were measured using instruments appropriate to the type of gas and the level present in the exhaust stream. Each relevant range of each instrument was calibrated monthly using at least four gas mixtures within the range, and both zero and span gases were applied to each relevant range before and after testing on each test day. During each test run, scale readings from the instruments were compared to curves developed from the monthly calibrations, and concentrations were reported in parts per million (ppm) or percent. Three gas species, unburned hydrocarbons, carbon monoxide, and carbon dioxide, were of particular importance for the calculation of an air-fuel ratio. The hydrocarbon measurements were made on a wet basis, and the concentrations were corrected to a dry basis during the calculation procedure. The air-fuel ratio was calculated from exhaust constituent levels using relationships described in the Federal Register. The initial calculation was for the stoichiometric fuel-air ratio: $$\left(\frac{F}{A}\right)_{\text{STOICH}} = \frac{M_{\text{C}} + (\text{HCR})}{138.18} \left(1 + \frac{\text{HCR}}{4}\right) = 0.0691.$$ (28) The equivalence ratio was then calculated from $$\phi = \frac{\left(\frac{F}{A}\right)_{MEAS}}{\left(\frac{F}{A}\right)_{STOICH}} = 0.544.$$ (29) For convenience, the following ratios were calculated: $$R_1 = \frac{HCC}{10^6}$$ $$R_2 = \frac{CO}{10^6}$$ $$R_3 = \frac{CO_2}{10^2} ,$$ CO = measured carbon monoxide concentration, parts per million CO₂ = measured carbon dioxide concentration, percent. The wet-to-dry correction factor was then obtained from: $$K_{W} = \frac{1}{1 + \left[\frac{HCR(R_{2} + R_{3}) + \frac{2Y^{\dagger}}{\phi} (R_{1} + R_{2} + R_{3}) (1 + \frac{HCR}{4})}{2 + \frac{R_{2}}{(R_{3})(K)}}\right]} = 0.929, \quad (30)$$
where K_w = wet-to-dry correction factor K = water-gas equilibrium constant = 3.5. then the hydrocarbon concentration that would exist in a dry stream was calculated: $$HCD = \frac{HCC}{K_w} = 60, \qquad (31)$$ and $$R_4 = \frac{HCD}{10^5}$$ (32) It was convenient to define the parameter $$\bar{X} = R_2 + R_3 + R_4$$, (33) for use in subsequent calculations The exhaust fuel-air ratio was obtained from the relationship $$\left(\frac{F}{A}\right)_{\text{calc}} = \frac{4.77 \left(1 + \frac{\text{HCR}}{4}\right) \left(\frac{F}{A}\right) \text{STOICH}}{\frac{1}{X} - \left(\frac{R_2}{2X}\right) - \left(\frac{R_4}{X}\right) + \left(\frac{\text{HCR}}{4}\right) \left(1 - \frac{R_4}{X}\right) - \frac{(0.75) (\text{HCR})}{\left(\frac{R_2}{X}\right) + \left(\frac{1 - K}{1 - \frac{R_4}{X}}\right)}}$$ (34) For the data representing Cummins run 235, the calculated fuel-air ratio was $$\left(\frac{F}{A}\right)_{\text{calc}} = 0.0358.$$ The difference between the calculated and measured values of the fuel-air ratio was obtained from $$D = \frac{\left(\frac{F}{A}\right)_{calc} - \left(\frac{F}{A}\right)_{meas}}{\left(\frac{F}{A}\right)_{meas}} \quad (100) = -4.9, \quad (35)$$ where D = percentage difference between measured and calculated fuel-air ratios. According to reference (12), the absolute value of D should be less than 10 for most engine operating conditions. The measured concentrations of nitric oxide were corrected for humidity using relationships described in reference (12). The calculation of the correction factor depends upon inlet air temperature, exhaust stream humidity, and the measured dry fuel-air ratio: $$K_{NO_X} = \frac{1}{1 + A(G - 75) + B(T - 85)} = 1.19,$$ (36) where A = 0.044 $$\left(\frac{F}{A}\right)_{meas}$$ - 0.0038 B = -0.116 $\left(\frac{F}{A}\right)_{meas}$ + 0.0053 G = humidity in grains per pound dry air = (7000)(H') T = inlet air temperature, °F, then $$DNO = (NO)(K_{NO_x}), \qquad (37)$$ where DNO = corrected nitric oxide concentration NO = measured dry nitric oxide concentration. The above correction is based upon the use of a water-ice bath for condensation of the water vapor present in the exhaust stream. The specific instrument used for this program employed a methanol-dry ice bath for this purpose; the bath temperature was about -150°F. Thus, an additional correction for moisture removal was used: $$DKNO = \frac{DNO}{1.00678}.$$ (38) The dry values of the exhaust constituent concentrations were used for the calculation of mass emissions. Again, several ratios were defined for convenience: $$R_{5} = \frac{HCD}{10^{4}}$$ $$R_{6} = \frac{CO}{10^{4}}$$ $$R_{7} = R_{6} + CO_{2} + R_{5}$$ $$R_{8} \approx \frac{DKNO}{10^{4}}.$$ The mass emissions, in grams per hour, were obtained from the following relationships: $$W_{HC} = \frac{(R_5)(W_F)}{R_7} = 61$$ (39) $$W_{CO} = \frac{\binom{M_{CO}(R_6)(W_F)}{(M_C + (HCR)(M_H))(R_7)}}{(M_C + (HCR)(M_H))(R_7)} = 306$$ (40) $$W_{NO_{X}} = \frac{\binom{M_{NO_{2}}(R_{8})(W_{F})}{(M_{C} + (HCR)(M_{H}))(R_{7})} = 2940, \qquad (41)$$ where W_{HC} , W_{CO} , W_{NO_X} = mass emissions of exhaust constituent, grams per hour W_F = mass flow rate of diesel fuel, grams per hour = (453.6)(F) M_{CO} = molecular weight of CO = 28.0 M_{NO_X} = molecular weight of NO_2 = 46.0 M_C = molecular weight of carbon M_H = molecular weight of hydrogen. The specific emissions were calculated on the basis of the corrected brake horsepower: $$S_{HC} = \frac{W_{HC}}{CBHP} = 0.14 \tag{42}$$ $$S_{CO} = \frac{W_{CO}}{CBHP} + 0.69 \tag{43}$$ $$S_{NO_{x}} = \frac{W_{NO_{x}}}{CBHP} = 6.59, \qquad (44)$$ where S_{HC} , S_{CO} , S_{NO_X} = specific emissions, grams per brake horsepower hour. ## Statistical Calculations During the Cummins engine tests, statistical procedures were used to evaluate the confidence in certain measured results and to assess the probable effect of the addition of water to the fuel. The performance of the statistical tests required that test procedures be repeated several times under the same conditions in order to provide suitable samples. As an example of the statistical techniques, two sets of test data will be considered. Table B-4 contains a list of all of the diesel fuel consumption rates observed for the Cummins engine with no water addition and with 20 percent water addition. Sample 1, for no water addition, was regarded as a sample of the entire population of test runs that could be performed at the specified engine setting without water addition. Similarly, Sample 2 was considered to be representative of all of the test runs that might be conducted at the specified engine condition with 20 percent water addition. The mean of each sample was calculated according to the relationship $$\bar{X} = \frac{1}{\eta} \sum_{i=1}^{\eta} X, \qquad (45)$$ TABLE B-4. POPULATION SAMPLES # Diesel Fuel Flow Rates at 1200 RPM Cummins Engine Tests | Sample 1 | | Sample 2 | | | |----------|-----------------|-----------|----------------|--| | 0% | . Water | 20% Water | | | | Run | Fuel Rate | Run | Fuel Rate | | | 178 | 54.72 | 182 | 53.71 | | | 188 | 55.30 | 192 | 53.04 | | | 194 | 54.43 | 228 | 53.92 | | | 224 | 54.84 | 242 | 53.80 | | | 230 | 55.04 | 256 | 54.77 | | | 238 | 54.94 | Mean | 53.85 | | | 244 | 55.58 | S | 0.6184 | | | 252 | 56.01 | 90% band | 53.85 ± 0.5896 | | | 258 | 55.94 | ļ | | | | Mean | 55.20 | | | | | S | 0.5482 | | | | | 90% band | 1 55.20 ± 0.340 | | | | A where \bar{X} = sample mean η = number of items in sample X = value of each fuel rate in the sample. The calculated mean value for each sample is shown in Table B-4. The standard deviation for each sample was calculated according to: $$S = \sqrt{\frac{\sum X^2 - \frac{(\sum X)^2}{\eta}}{n-1}}, \qquad (46)$$ where the individual terms are defined above. The standard deviation for each sample is also shown in Table B-4. One statistical test was applied to each sample as an individual entity. The Student's t-distribution was used to attach a confidence band to each sample mean. Values of the t-distribution are shown in Table B-5. For a desired confidence level, say 90 percent, it can be argued that the true population mean lies within the band defined by $$\bar{X} \pm t_{0.95} (\eta - 1) \sqrt{\frac{S}{\eta}}$$, (47) where the values of t are obtained from Table B-5. For the example data, the values of the upper and lower limits of the 90 percent confidence band are shown in Table B-4. Thus, it is possible to state with 90 percent confidence that the fuel rate for an additional test at 1200 rpm without water addition would lie between 54.86 and 55.54 pounds per hour. Since the effect of water addition is desired, it is also desirable to employ a test that compares the two samples. It is possible that the two samples selected are a part of the same population; in that case no definite statement could be made concerning the effect of water addition. The goal of the second statistical procedure is a confidence level for the statement that the means of the two populations (without and with water addition) are different. As a first step, it was assumed that the two population means were equal. The pooled standard deviation was calculated: TABLE B-5. CUMULATIVE DISTRIBUTION | <u>v</u> | 0.75 | 0.80 | 0.85 | 0.90 | 0.95 | 0.975 | 0.995 | 0.9995 | |----------------------------|---|---|---|---|---|---|---|---| | 1 | 1.0005 | 1.376 | 1.963 | 3.078 | 6.314 | 12.706 | 63.657 | 636.619 | | 2 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 8.925 | 31.598 | | 3 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 5.841 | 12.941 | | 4 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 4.604 | 8.610 | | 5 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 4.032 | 6.859 | | 6 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.707 | 5.959 | | 7 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 3.499 | 5.405 | | 8 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 3.355 | 5.041 | | 9 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 3.250 | 4.781 | | 10 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 3.169 | 4.587 | | 11 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 3.106 | 4.437 | | 12 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 3.055 | 4.318 | | 13 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 3.012 | 4.221 | | 14 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.977 | 4.140 | | 15 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.947 | 4.073 | | 16 | 0.690 | 0.866 | 1.071 | 1.337 | 1.746 | 2.120 | 2.921 | 4.015 | | 17 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.898 | 3.965 | | 18 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.878 | 3.922 | | 19 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.861 | 3.883 | | 20 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.845 | 3.850 | | 21 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.831 | 3.819 | | 22 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.819 | 3.792 | | 23 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.807 | 3.767 | | 24 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.797 | 3.745 | | 25 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.787 | 3.725 | | 26
27
28
29
30 | 0.684
0.684
0.683
0.683 | 0.856
0.855
0.855
0.854
0.854 | 1.058
1.057
1.056
1.055
1.055 | 1.315
1.314
1.313
1.311
1.310 | 1.706
1.703
1.701
1.699
1.697 | 2.056
2.052
2.048
2.045
2.042 | 2.779
2.771
2.763
2.756
2.750 | 3.707
3.690
3.674
3.659
3.646 | | 35
40
45
50
55 | 0.682
0.681
0.680
0.680
0.679 | 0.852
0.851
1.048
0.849
0.849 |
1.052
1.050
1.048
1.047 | 1.306
1.303
1.301
1.299
1.297 | 1.690
1.684
1.680
1.676
1.673 | 2.030
2.021
2.014
2.008
2.004 | 2.724
2.704
2.690
2.678
2.669 | 3.591
3.551
3.520
3.496
3.476 | | 60 | 0.679 | 0.848 | 1.046 | 1.296 | 1.671 | 2.000 | 2.660 | 3.460 | | 70 | 0.678 | 0.847 | 1.045 | 1.294 | 1.667 | 1.994 | 2.648 | 3.435 | | 80 | 0.678 | 0.847 | 1.044 | 1.293 | 1.665 | 1.990 | 2.638 | 3.416 | | 90 | 0.678 | 0.846 | 1.043 | 1.291 | 1.662 | 1.987 | 2.632 | 3.402 | | 100 | 0.677 | 0.846 | 1.042 | 1.290 | 1.661 | 1.984 | 2.626 | 3.390 | | 200 | 0.676 | 0.844 | 1.039 | 1.286 | 1.653 | 1.972 | 2.601 | 3.340 | | 300 | 0.676 | 0.843 | 1.038 | 1.285 | 1.650 | 1.968 | 2.592 | 3.323 | | 400 | 0.676 | 0.843 | 1.038 | 1.284 | 1.649 | 1.966 | 2.588 | 3.315 | | 500 | 0.676 | 0.843 | 1.037 | 1.284 | 1.684 | 1.965 | 2.586 | 3.310 | | 1000 | 0.675 | 0.842 | 1.037 | 1.283 | 1.647 | 1.962 | 2.581 | 3.301 | | œ | 0.67449 | 0.84162 | 1.03643 | 1.28155 | 1.64485 | 1.95996 | 2.57582 | 3.29053 | $$S = \frac{(\eta_1 - 1) S_1^2 + (\eta_2 - 1) S_2^2}{\eta_1 + \eta_2 - 2} = 0.3278, \tag{48}$$ where η = sample size S = sample standard deviation, then $$S_{X_1} - \bar{X}_2 = \sqrt{\frac{S^2}{\eta_1} + \frac{S^2}{\eta_2}} = 0.3194$$, (49) and $$T = \frac{\bar{x}_1 - \bar{x}_2}{s\bar{x}_1 - \bar{x}_2} = 4.2272, \qquad (50)$$ now, if $$T \leq -t (1 - \frac{\alpha}{2}) (\eta_1 + \eta_2 - 2),$$ (51) or $$T \stackrel{>}{=} t(1 - \frac{\alpha}{2})(\eta_1 + \eta_2 - 2),$$ (52) where α is the probability of rejecting a true hypothesis, then the hypothesis of equal sample means can be rejected. For the present case, using Table B-5, $$T > t_{(.995)(12)}$$ and $$1 - \frac{\alpha}{2} = 0.995$$, imply that $\alpha = 0.01$. Thus, it is possible to state with 99 percent confidence that the two samples represent different populations and that significance can be attached to the difference between the means. APPENDIX C TEST RESULTS TABLE C-1. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, BASELINE | DYNAMOMETER CONSTANT: 30
H/C RATIO: 1.78 | 00 API | GRAVITY | OF DIESE | EL FUEL: | 35.3 AT | 60F | | |---|---|---|---|--|--|---|---| | KUN NUMBER
NOM. WATER PCT. | 25 9 .
0 . | 262
0 | 268
0 | 269
0 | 275.
0. | 276 .
V . | 282
0 | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 900.
257. | 900.
257. | 900.
257. | 900.
257. | 900.
257. | 900.
257. | 900 :
257 : | | BAR PRESS. 1N-HG DRY BULB DEG F WET BULB DEG F REL HUMIDITY PCT CORR BHP HP CORR BMEP PSI | 28.95
83.
69.
49.
44.9
23.1 | 29.14
77.
66.
56.
44.1
22.7 | 29.12
87.
66.
32.
44.8
23.1 | 29.32
78.
66.
53.9
22.6 | 29.25
91.
68.
30.
44.8
23.0 | 29.30
77.
61.
39.
43.6
22.5 | 29.21
89.
65.
26.
44.6
23.0 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC LB/BHP-HR AIR FLOW LB/MIN | 25.12
0.0
0.0
5590
26.1 | 25.11
0.0
0.0
5692
26.5 | 24.73
0.0
0.0
.5516
26.0 | 25.52
0.0
0.0
.5817
26.3 | 25.24
0.0
0.0
.5635
26.1 | 24.70
0.0
0.0
.5662
26.6 | 24.85
0.0
0.0
5570
26.1 | | CORR. BHP PSI FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. X BSFC AIR FLOW LB/HR COOLANT IN DEG F COOLANT IN DEG F FUEL RETURN F F F F F F F F F F F F F F F F F | 384071737014474510939364895012
1188581114474510939364895012
441111445 54454545454 | 1111 11 44 1144 544545454545454545454545 | 953318107272466430128995503960
789950996801774399643084644369
44111144 544545454454 | 744699777318853220832707811
44 1144 5445454542227 | 11775
11775
11775
11772
11772
11772
1172
11 | 1111 44 54454545454545454545454545454545 | 631257004877241070712070378988
7879407967007743795321946333588
111 44111144 54454545454 | | RAIL PRESSURE PSI
BOOST (R) PSI
BOOST (L) PSI
INLET VAC. (R) IN-H20
EXH. PRESS (R)PSI
EXH. PRESS (L)PSI
TUKB IN (R) IN-HG | 455 1200000
200000
100000000000000000000000 | 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 466 1200000
1200000
20030 | 486 1200000
20020 | 486 1.5000
1.50000
00.000
200.000
100.30 | 50 4 50 00 00 00 00 00 00 00 00 00 00 00 00 | 46 1200000
1200000
20 30 | TABLE C-2. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 5% WATER | DYNAMOMETER CONSTANT: 3000
H/C RATIO: 1.78 | API | GRAVITY | OF DIESE | L FUEL: | 35.3 AT 60F | |--|--|---|---|--|-------------| | KUN NUMBER
NOM. WATER PCT | 260 .
S . | 263.
5. | 270 .
S | 277.
5. | | | ENGINE SPEED KPM
OBS. TORQUE LB-FT | 900
257 | 900.
257. | 900
257 | 900
257. | | | BAK. PRESS. IN-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CURR. BHP HP CORR. BMEP PSI | 28.90
85.
70.
47.
45.3
23.3 | 29.15
77.
66.
56.
44.3
22.8 | 29.34
78.
66.
53.
44.1
22.7 | 29.31
77.
61.
39.
43.8 | | | FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR | 24.82
11.5
4.9
.5483 | 25.06
10.5
4.4
.5652 | 24.89
11.1
4.7
5646 | 24.73
10.5
4.5
.5 6 47 | | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP FUEL RETURN DEG F FUEL COOLER DEG F INTAKE AIR DEG F TURB. INLET (R) DEG F TURB. INLET (R) DEG F COMP. OUT (R) DEG F COMP. OUT (R) DEG F CHARGE AIR (L) DEG F EXH. STACK (L) DEG F EXH. STACK (L) DEG F EXHAUST 1R DEG F EXHAUST 1R DEG F EXHAUST 3R DEG F EXHAUST 5R 5C DEG F EXHAUST 5C DEG F | 274914678747474946350710432555
889951984600773198633974633247
44111144 54444545455 | 111
789940998668250550039940656133
789940975799774288632983633337
1144 54445454454 | 942267108977354641806106450561
942267108977354641806106450561
94459723237 | 111 11 44 1144 54445454558
7899409746997731874219725236
740257088655143749949577183638 | | | OIL PRESSURE PSI KALL PRESSURE PSI BOOST (R) PSI BOUST (L) PSI INLET VAC. (R) IN-H20 EXH. PRESS. (L)PSI TUKB. IN. (R) IN-HG TURB. IN. (R) IN-HG FURE PRESS. PSI EMULSION PRESS. PSI WATER PRESS. PSI | 486 1200000
486 1200000
200000
10 60 | 48 6 120000
00000000000000000000000000000000 | 486 120000
055220000
00000
2003 | 96 1200000
20030
100030 | | TABLE C-3. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 10% WATER | DYNAMOMETER CONSTANT: 30
H/C RATIO: 1.78 | | | | | 35.3 | AT | 60F |
--|---|---|---|---|------|----|-----| | RUN NUMBER
NOM. WATER PCT. | 261.
10. | 264.
10. | 271.
10. | 278.
10. | | | | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 900 :
257 : | 900.
257. | 900
257 | 900.
257. | | | | | BAR. PRESS. IN-HG DRY BULB DEG F WHT BULB DEG F REL. HUMIDITY PCT CUKR. BHP HP CORR. BMEP PSI | 28.89
85.
70.
48.
45.4
23.4 | 29.15
82.
66.
43.5
44.5
22.9 | 29.35
82.
67.
46.2
22.7 | 29.32
80.
64.
41.
44.0
22.6 | | | | | FUEL FLOW LEA/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LE/BHP-HR | 24.87
17.3
7.1
5479 | 25.03
19.7
8.0
.5627 | 25.31
19.7
7.9
.5731 | 24.89
19.7
8.1
.5660 | | | | | COOLANT IN DEG F COULANT OUT DEG F OIL SUMP DEG F FUEL IN DEG F FUEL RETURN DEG F FUEL SUPPLY DEG F FUEL COMP DEG F COMP OUT (R) DEG F COMP OUT (R) DEG F CHARGE AIR (R) DEG F CHARGE AIR (R) DEG F EXHAUST 1R EXHAUST 1R EXHAUST 1R EXHAUST 3R DEG F EXHAUST 5R EXHAUST 1L EXHAUST 1L EXHAUST 3L EXHAUST 5L | 495254192760683228187457655450
889051084601773198531972612137
11111 441111144 54445454554 | 841217035394240561043603442912
789914984690773188532572623236
11144 544545454 | 942481220199357943471251096184
789941220199357943471251096184
544445454 | 407369209766814820853946490803
788940983599672088321871512186
1144 544445454454 | | | | | OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI HOUST (L) PSI INLET VAC. (R) IN-H20 EXH. PRESS. (L)PSI EXH. PRESS. (L)PSI TURB. IN. (R) IN-HG TURB. IN. (L) IN-HG FUEL PRESS. PSI EMULSION PRESS. PSI FUEL SUPPLY PSI WATER PRESS. PSI | 477 1200000
200000
200000000000000000000000 | 97 12000000
4 12000000000000000000000000000000000000 | 487 12.000.00
00.00
10.00
10.00
10.00
10.00
10.00
10.00 | 05520000
1200000
2030
1 | | | | TABLE C-4. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 15% WATER | NUMBER CONCIONS AND | Τ Φ Δ | CPAUITY | OF DIESEL | FUEL: | 35.3 | AT | 60F | |--|--|---|---|-------|------|----|-----| | DYNAMOMETER CONSTANT: 3000
H/C RATIO: 1.78 | | | | | | | | | RUN NUMBER
NOM, WATER PCT. | 265.
15. | 272.
15. | 279.
15. | | | | | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 900.
257. | | | | | | | | BAR PRESS IN-HG DRY BULB DEG F WET BULB DEG F REL HUMIDITY PCT CORR BHP HP CORR BMEP PSI | 29.15
83.
67.
44.6
22.9 | 29 34
87 68 37 44 4
22 8 | 29.30
84.
66.
38.
44.3
22.8 | | | | | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR Alk FLOW LF/MIN | 24.50
33.8
13.2
5498
26.1 | 24.29
33.8
13.3
5474
26.3 | 24.46
33.2
13.2
156.3 | | | | | | COOLANT IN DEG F COULANT OUT DEG F COULANT OUT DEG F COULANT OUT DEG F COULANT OUT DEG F COULANT DEG F FUEL IN DEG F FUEL SUPPLY DEG F FUEL SUPPLY DEG F FUEL SUPPLY DEG F FUEL COOLER DEG F FUEL COOLER DEG F COMP DEG F COMP OUT (R) | 952229040905465983090174319505
789914984500772088422961611235
441111144 544445454554 | 052702565722464696876919887161
88995198350277220883221871501226
44111144 544454545461 | 840929745500353665775807700394
78995098350077208832187154226
44111144 S4444545454 | | | | | | OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI BOUST (L) PSI INLET VAC. (R) IN-H20 EXH. PRESS. (L)PSI EXH. PRESS. (L)PSI UKB. IN. (R) IN-HG TURB. IN. (R) IN-HG FUEL PRESS. PSI EMULSION PRESS. PSI FUEL SUPPLY PSI WATER PRESS. PSI | 487 20 00 00 00 00 00 00 00 00 00 00 00 00 | 487 120 00 00 00 00 00 00 00 00 00 00 00 00 0 | 497 120000
20030
20030 | | | | | TABLE C-5. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 20% WATER | DYNAMOMETER CONSTANT: 3000
H/C RATIO: 1.78 | | | | FUEL: | 35.3 | AT | 60F | |--|--|---|--|-------|------|----|-----| | KUN NUMBER
NOM. WATER PCT. | 266 .
20 . | 273.
20. | 280 .
20 . | | | | | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | | | | | | | | | BAR. PRESS. 1N-HG DRY BULB DEG F WET BULB DEG F REL. HUMIDITY PCT CUKR. BHP HP CORR. BMEP PSI | 29.14
83.
67.
43.
44.7
23.0 | 29 32
87
68
37
44 5
22 9 | 29, 28
84.
66.
38.
44.4
22.8 | | | | | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR AIR FLOW LB/MIN | 24.45
49.8
18.4
.5469
25.7 | 24.81
49.8
18.1
5573
26.2 | 24.68
49.8
18.2
.556.2 | | | | | | COOLANT IN DEG F CUOLANT OUT DEG F FUEL SUMP FUEL RETURN DEG F FUEL COOLER DEG F INTAKE AIR TURB. INLET (R) DEG F INTAKE AIR
TURB. INLET (R) DEG F COMP. OUT (R) DEG F COMP. OUT (R) DEG F CHARGE AIR (L) DEG F CHARGE AIR (R) DEG F EXH. STACK (L) DEG F EXH. STACK (L) DEG F EXHAUST 1R CELLA AIR CELLA AIR CELLA AIR CEXHAUST 2R CEXHAUST 3R CEXHAUST 4R CEXHAUST 5R CEXHAU | 942415262827465205012372588450
789951983400771098211850580114
5444544454 | 0.62922886844575799849205247991
88995298240077198881008605800091
111 44111143 54444544454 | 6305033564302042687696731065172
789951982400771938100760580103
111 441111143 54444544454 | | | | | | OIL PRESSURE PSI KAIL PRESSURE PSI BOOST (R) PSI HUUST (L) PSI INLET VAC. (R) IN-H20 EXH. PRESS. (R)PSI EXH. PRESS. (L)PSI TURB. IN. (R) IN-HG TURB. IN. (L) IN-HG FURL PRESS. PSI EMULSION PRESS. PSI FUEL SUPPLY WATER PRESS. PSI | 487 200000
20030
10000 | 48 120.000
0.000
200.30 | 98 1200000
2030
1 | | | | | TABLE C-6. ENGINE TEST RESULTS, CUMMINS ENGINE, 900 RPM, 25% WATER | DYNAMOMETER CO
H/C RATIO: 1.7 | NSTANT: 3000
B | | | | FUEL: | 35.3 | ΓA | 60F | |---|--|---|--|--|-------|------|----|-----| | RUN NUMBER
NOM. WATER PCT | | 267 .
25 . | 274.
25. | 28 <u>1</u> .
25 . | | | | | | ENCINE SPEED
ORS: TORQUE | RPM
LBFT | 900
257 | 900.
257. | 900.
257. | | | | | | BAR. PRESS
DRY BULB
WET BULB
REL. HUMIDITY
CORR. BHP
CORR. BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.13
87.
66.
32.
44.7
23.0 | 29.29
90.
69.
34.
44.7
23.0 | 29 . 25 | | | | | | FUEL FLOW
WATER FLOW
CALC. VOL. %
RSFC
AIR FLOW | LB/HR
CC/MIN
PCI
LB/BHPHR
LB/MIN | 25.16
66.4
22.6
5628
26.0 | 24.84
66.4
22.7
.5560
26.2 | 24.73
66.4
22.9
5562
26.1 | | | | | | COOLANT IN CUOLANT OUT OIL SUMP FUEL SUMPLY FUEL SUMPLY FUEL COOLER INTAKE AIR TURB. INLET (R COMP. OUT (L) CHARGE AIR (R) CHARGE AIR (R) EXH. STACK (R) EXH. STACK (L) CHARGE AIR EXHAUST IR EXHAUST IR EXHAUST IR EXHAUST SR EXHAUST SR EXHAUST SR EXHAUST SR EXHAUST SR EXHAUST SL | DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | 384542388350681098762305031162
88995198240177108800017595831162
111 441111144 544444444444444 | 173054006577682800031119012339
88905109240077149991031119012339
5444444454 | 492.
446.
470.
409.
491.
432. | | | | | | OIL PRESSURE RAIL PRESSURE BOOST (R) HOOST (L) INLET VAC. (R) EXH. PRESS. (L) IUKB. IN. (R) TURB. IN. (L) FUEL PRESS. EMULSION PRESS. FUEL SUPPLY WATER PRESS. | PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI | 488 200000
20000
10030 | 489 120000
05520000
20030 | 05500000000000000000000000000000000000 | | | | | TABLE C-7. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, BASELINE | DYNAMOMETER CONSTANT: 3000
H/C RATIO: 1 78 | API | GRAVITY | OF DIES | EL FUEL: | 35.3 AT | 60F | | | | |---|--|--|---|--|---|---|---|---|--| | RUN NUMBER
NOM: WATER PCT: | 178.
0. | 188 .
0 . | 194.
0. | 224
0 | 230
0 | 238
0 | 244 .
0 . | 252 .
0 . | 258 .
0 . | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1200
508 | 1200 .
500 . | 1200
508 | 1200
508 | 1200 .
508 . | 1200.
508. | 1200
508 | 1200 .
508 . | 1200.
508. | | BAR PRESS IN-HG DRY BULB DEG F WIT PULB DEG F REL HUMIDITY PCT CURR BHP HP CORR BHEP PSI | 29.33
78.
63.
43.
115.4
44.6 | 29 11
73
68
116 2
44 8 | 29.17
81.
72.
65.
117.5
45.4 | 29.03
82.
76.
76.
118.9
45.9 | 29.03
89.
76.
119.9
46.3 | 28.95
86.
76.
63.
119.8
46.2 | 28.92
100
78
38
121 6
46.9 | 29.01
82:
77:
80:
119:4
46:1 | 29.10
81.
74.
117.8
45.5 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC VOL. % PCT BSFC VOL. % PCT LB/BHP-HR A1R FLOW LB/HIN | 54.72
0.0
0.0
.4740
38.4 | 55.30
0.0
0.0
4761
38.0 | 54.43
0.0
0.0
.4631
37.3 | 54.84
0.0
0.0
4613
36.5 | 55.04
0.0
0.0
4589
36.8 | 54.94
0.0
0.0
4586
37.3 | 55.58
0.0
0.0
4570
36.7 | 56.01
0.0
0.0
4689
36.9 | 55.94
0.0
0.0
4248
37.3 | | STOICH, F/A
MEAS: F/A
CALC: F/A
% DIFF. PCT | 0691
0237
0256
8 07 | 0691
0242
0248
2 37 | 0691
0243
0250
2.74 | 0691
0250
0246
-1 67 | .0691
.0249
.0245
-1.80 | .0691
.0245
.0250
2.07 | 0691
0252
0255
1 18 | 0691
0253
0235
-7 14 | 0691
0250
0252
61 | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP FUEL RETURN DEG F FUEL COOLER DEG F FUEL COOLER DEG F TURB. INLET (L)DEG F TURB. INLET (L)DEG F TURB. INLET (L)DEG F COMP. OUT (R) DEG F COMP. OUT (R) DEG F CHARGE AIR (R) DEG F EXHAUST STACK (R) DEG F EXHAUST STACK (R) WATER INLET EXHAUST SR DEG F | 189949971099997728353740
18994997437116689876097728353740
1999437116689876097728353740 | 214294029765899456380941581899
78994997250066977719806515701397
6611169777756667666666 | 18975222117022901960181015223600
1199509837022901960181015253600
661116707880181015253606 | 11111198651320285651382390211093
66511177908811888590211093
666111177908871888590211093
75566766676 | 12151329618432242942517015362302
75032961843224729942517015362302
756643802 | 111997446788889900970984034026649911165899709840340266499 | 1285309807711190413183893297340111111111111111111111111111111111111 | 1198449449135576584737460564
09865111773557658473746056767676676 | 7596054972111130060450231710860
7696054972111130060450231710860
756667676221 | | OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI BOOST (R) PSI INLET VAC (R) IN-H20 EXH PRESS (R)PSI EXH PRESS (L)PSI EXH PRESS (L)PSI EXH PRESS (L) IN-HG TURB IN (R) IN-HG TURB IN (L) IN-HG FUEL PRESS PSI EMULSION | 65 9 8 6 6 1 1 1 5 4
1 1 2 2 3 2 1 1 8 2 0 | 66 0858 11554
147 23 21154
200 20 | 0859 1155
21020 | 08520155
11240 210
20020 | 08650155
08650155
21020
20020 | 2.5 | 085800055
112401210
20020 | 08400155
615-1250 21-10020
10020 | 0804-200
40-00 0-000
61 000
000 | | HYDROCARBONS PPHC
CARBON MONOXIDEPPH
NITRIC OXIDE PPH
NITROGEN OXIDESPPH
CARBON DIOXIDE PCT
OXYGEN PCT
SMOKE OPACITY PCT | 96.
488.
340.
355.
5.4
14.3 | 54
218
313
315
15
8 | 94
5063
268
25.3
15.8
8.7 | 77 : 201 : 213 : 234 : 5 : 3 : 11 : 6 : 9 : 6 | 124
179
179
2251
255
9
12 | 120
233
237
230
250
13.9
10.2 | 237
237
258
5
15 6
10 5 | 70.
239.
174.
190.
5.0
13.6 | 235
235
240
5 2
15 5 | | HC MASS GM-MR CU MASS GM-MR NOX GM-MR BSHC GM-MR BSHC GM-MHP-HR BSHO GM-MHP-HR | 45.656
446.11
521.28
3.955
3.8642
4.5146 | 26 649
203 00
535 294
1 7475
4 6137 | 40 645
475 09
484 32
3459
4 0426
4 1211 | 37.936
268.15
431.38
2.2558
3.6290 | 62.050
192.15
441.54
1.6023
3.6818 | 58.433
218.68
404.88
4878
1.8255
3.3799 | 56.697
223.13
419.61
1.8348
3.4504 | 37 212
244 86
383 03
2 0501
3 2069 | 29 219
221 67
427 38
2480
1 8813
3 6272 | TABLE C-8. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 5% WATER | DYNAMOMETER CO
H/C RATIO: 1.7 | 005 : THATEN | 0 AP | GRAVITY | OF DIES | SEL FUEL: | 35.3 AT 601 | f |
--|--|---|---|--|--|--|---| | RUN NUMBER
NOM. WATER PCT | | 179.
5. | 189 | 225 .
5 . | 23 9 . | 25 <u>3</u> | | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 1200
508 | 1200
508 | 1200
508 | 1200
508 | 1200
508 | | | BAR PRESS
DRY BULB
WET BULB
REL HUMIDITY
CURR BHP
CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.32
78.
63.
43.
115.6
44.6 | 29.14
73.
68.
78.
116.2
44.8 | 29.04
82.
76.
76.
118.7
45.8 | 28.97
86
76
63
120.0
46.3 | 29.02
82.
77
80.
119.5
46.1 | | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN | 54.66
23.7
4.6
4727
38.4 | 54.55
23.7
4.6
4694
38.0 | 54.86
25.0
4.8
.4622
35.7 | 54.48
23.7
4.6
4539
37.1 | \$5, 53
18, 5
3, 5
4645
36, 9 | | | STOICH, F/A
MEAS, F/A
CALC, F/A
% DIFF. | PCT | 0691
0237
0252
6 05 | 0691
0240
0246
2 61 | 0691
0256
0244
-4.78 | 0691
0245
0250
2.34 | 0691
0251
-0245
-2-35 | | | COOLANT IN CUOLANT OUT OUT OUT OUT OUT OUT OUT OUT OUT OU | D D D D D D D D D D D D D D D D D D D | 895583206822684138392037587071
67994998422166479877740527582388
66111667987740527582388 | 1111973399558914554769917899492
661106694770866666666666666666666666666666666666 | 1119040571382212754435146487444477
789093713822127588881906334744477
7566667666666 | 111607669/7010030620243/4777
111607669/7010030620243/4777
66111156 6566676766676 | 6448992553267026756575542621220
111994698551177998898575542621220
651117798898575542621220
650566666666666666666666666666666666 | | | DIL PRESSURE kAIL PRESSURE BOOST (R) KUUST (L) INLET VAC (R) EXH PRESS (R EXH PRESS (L TURB IN (L) TUR | PSI
PSI
PSI
IN-H2O
PSI
OPSI | 08671153
218020
10020 | 08580054
01123111212000
00000 | 0 850 0 155
0 210 20
100 20
100 20 | 08540055
111240055
10020 | 65.08334254
22.54
2100
1000 | | | HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDE: LARBON DIOXIDE OXYGEN SMUKE UPACITY | PPMC
PPPM
PPM
PPCT
PCT
PCT | 1059
339
350
355
13.7 | 70
488
275
300
5
16
0 | 107
267
210
231
5 2
11 6 | 142
219
214
235
3
14 0 | 38
219
178
178
5.2
13.7
6.5 | | | HC MASS
CO MASS
NOX MASS
ESHC
BSCO
ESNO | GM-HR
GM-HK
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HK | 50.691
222.69
537.09
4384
1.9258
4.6447 | 34.560
464.32
527.91
2974
3.9961
4.5434 | 54.561
257.26
444.20
.4597
2.1678
3.7430 | 68.819
204.27
423.10
5734
1.7020
3.5254 | 44.503
213.32
370.01
-3723
1.7844
3.2623 | | TABLE C-9. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 10% WATER | DYNAMOMETER CO
H/C RATIO: 1.7 | NSTANT: 3000 |) API | GRAVITY | OF DIES | EL FUEL: | 35.3 AT 60 | ıF | |--|--|--|--|--|---|---|----| | RUN NUMBER
NOM. WATER PCT | | 180.
10. | 190
10: | 226 .
10 . | 240.
10. | 254 .
10 | | | ENGINE SPEED
OBS: TORQUE | RPM
LB-FT | 1200.
508. | 1200.
508. | 1200.
500. | 1200.
508. | 1200.
508. | | | BAR. PRESS.
DRY BULB
WET BULB
REL. HUMIDITY
CORR. BHP
CORR. BHEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.31
80.
65.
44.
116.1
44.8 | 29 14
74
68
74
116 1
44 8 | 29.05
82.
75.
72.
118.5
45.7 | 28.96
92.
78.
54.
120.6
46.5 | 29.04
86.
79.
74.
119.6
46.2 | | | FUEL FLOW
WATER FLOW
CALC. VOL. X
BSFC
AIR FLOW | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN | 53.63
49.8
9.3
.4617
37.2 | 53.71
49.8
9.3
4624
37.9 | 54.38
49.8
9.2
.4591
37.1 | 53.90
49.8
9.2
.4470
36.5 | 55,02
49.0
4599
36.7 | | | STOICH F/A
MEAS F/A
CALC F/A
% DIFF | PCT | 0691
0240
0249
3.57 | 0691
0236
0242
2 52 | .0691
.0245
.0240
-2.03 | 0691
0246
0252
2 37 | .0691
.0250
.0235
-6.06 | | | COOLANT OUT CUOLANT OUT OIL SUMP FUEL SUMP FUEL RETURN FUEL SUPPLY FUEL COOLER INTAKE AIR TURB. OUT (R) COMP. OUT (R) CHARGE AIR (R) EXH. STACK (L) WATER INLET EXHAUST 2R EXHAUST 2R EXHAUST 3R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5L | 00000000000000000000000000000000000000 | 111970662314389885112885139317
661116667886112885139317
66111666788655931747093176 | 111940993311044895794483000573212
6611046675777483000573212
661106675777483000573212 | 199084618522027254421328481880
199084618522027254421328481880
66111177878888791328481880
6611117558656666666666666666666666666666 | | 44808245245570238640880039908285
119708889894495880176
55111155 6534666666666666666666666666666666666 | | | OIL PRESSURE RAIL PRESSURE BOOST (R) BOOST (A) INLET VAC (R) EXH PRESS (R EXH PRESS (L TURB IN (L) TURB IN (L) FUEL PRESS EMULSION PRESS FUEL SUPPLY WATER PRESS | PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI | 25 25 25 25 25 25 25 25 25 25 25 25 25 2 | 285811554
2123 212840
2125 01 | 07500-53
671240 210020
20020 | 07556
11246
0 2104
20020
10020 | 067771077
611000
210000
6000 | | | HYDROCARBONS CARBON MONOXIDI NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN SMOKE OPACITY | PPMC
EPPM
PPM
BPPM
BPCT
PCT
PCT | 290
320
350
151
13 2 | 5075
2775
16 1
16 2 | 1740
1740
1700
114
14
15 | 22255
22255
14
22222
14
14 | 96.
2215.
240.
5.0
15.1 | | | RENO
BRCO
BRCO
HARS
CO MARS
HC MARS | GM-HR
GM-HR
GM-HR
GM-BHP-HR
GM/BHP-HR
GM/BHP-HR | 47,349
275,89
557,52
4077
2,3754
4,8002 | 45.610
493.12
496.37
3927
4.1595
4.2736 | 60 .147
266 .69
450 .12
-5077
2 .2513
3 .7997 | 58.619
204.09
419.09
.4061
1.6923
3.4753 | 50,255
523,53
516,01
4200
1,8683
4,3130 | | TABLE C-10. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 15% WATER | DYNAMOMETER CONSTANT: 3000
H/C RATIO: 1.78 | API | GRAVITY | OF DIESEI | _ FUEL: : | 35.3 AT 60F | |---
---|--|--|---|---| | H/C RATIO: 1.78 RUN NUMBER NOM. WATER PCT. | 181 | 191
15 | 227 .
15 | 24i
15 | 255.
15 | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1200.
508. | 1280
508 | 1200
508 | 1200 .
508 | 1200.
508. | | BAR PRESS IN-HG DRY BULB DEG F WEI BULB DEG F REL HUMIDITY CURR BHP HP CORR BHEP PSI | 29.29
81.
64.
39.
116.2
44.8 | 29.15
74.
68.
74.
116.4
44.9 | 29.05
84.
76.
118.7
45.8 | 28.96
93.
79.
54.
121.0
46.7 | 29.06
85.
77.
70.
119.1
46.0 | | FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC Alr FLOW LB/BHP-HR LB/MIN | 54 19
79 6
13 9
4664
37 7 | 53.25
82.8
14.6
4575
37.6 | 53.70
82.8
14.5
4524
36.9 | 53.06
81.2
14.4
4384
36.3 | 53.38
82.8
14.6
.4483
36.6 | | STOICH. F/A
MEAS. F/A
CALC. F/A
% DIFF. PCT | .0691
.0240
.0249
3.74 | .0691
.0236
.0240
1.55 | 0691
0242
0242
- 26 | .0691
.0244
.0251
2.80 | 0691
0243
0250
2.66 | | COOLANT IN DEG F FOUL SUMP DEG F F F F F F F F F F F F F F F F F F F | 00500068372244891563134912294256
111111
66111166688558217359054
111111
66111155 65566665666 | 326799558755894726890703393747
1119499791006664875593166148832
56111155 655666685566 | 66111759889701999999999999999999999999999999999 | 427399945833125155319965424273
7890409921227766799668306570075
66111155 65566666666666666666666666666 | 17859 08 22 74 58 47 23 4 28 6 6 22 23 4 6 111 115 5 8 8 7 8 2 2 2 3 4 6 6 5 9 6 6 6 9 9 6 6 9 9 6 6 9 9 6 6 6 9 9 6 6 9 6 9 9 6 6 6 9 9 6 9 6 9 6 9 6 9 9 6 9 6 9 9 6 9 6 9 9 6 9 9 6 9 9 6 9 9 6 9 | | OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI BOUST (L) PSI INLET VAC (R) IN-H20 EXH PRESS (L) PSI TURB IN (R) IN-HG TURB IN (L) IN-HG FUEL PRESS PSI ENULSION PRESS PSI FUEL SUPPLY WATER PRESS PSI WATER PRESS PSI | 28887 11552
190 20 | 55.5858 1152
1023
1025
1025 | 085200053
10124001210
20020 | 6576015760
210020
100260 | 08231255
210000 | | HYDROCARBONS PPMC CARBON MONOXIDEPPM NITRICOXIDEPPM NITROGEN OXIDEPPM CARBON DIOXIDE PCT OXYGEN SMUKE OPACITY PCT | 125
2460
3555
1334 | 108
5243
300
16 1
16 3 | 124
246
2034
235
4 | 153922
253922
15 4 6 | 1050000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
1050000
105000
105000
105000
105000
105000
105000
105000
105000
1050000
105000
105000
105000
105000
105000
105000
105000
105000
1050000
105000
105000
105000
105000
105000
105000
105000
105000
1050000
105000
105000
105000
105000
105000
105000
105000
105000
1050000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105000
105 | | HC MASS GM-HR LU MASS GM-HR NOX MASS GM-HR SHC GM/BHP-HR BSCO GM/BHP-HR BSCO GM/BHP-HR | 60 609
230 08
579 26
5216
1 9800
4 9849 | 53.197
544.39
568.46
4570
4.6764
4.6832 | 61 402
234 59
476 76
5173
1 9764
4 0167 | 71.818
217.19
444.63
5934
1.7944
3.6735 | 50.092
219.32
467.22
4206
1.8417
3.9233 | TABLE C-11. ENGINE TEST
RESULTS, CUMMINS ENGINE, 1200 RPM, 20% WATER | DYNAHOMETER CONSTANT: 3000
H/C RATIO: 1.78 | API | GRAVITY | OF DIES | EL FUEL: | 35.3 AT 60F | |---|---|---|--|--|---| | RUN NUMBER | 182. | 192. | 228 . | 242 . | 256 . | | NOM. WATER PCT. | 20. | 20. | 20 | 20 . | 20 . | | ENGINE SPEED RPM | 1200. | 1200 . | 1200 | 1200 . | 1200. | | OBS. TORQUE LB-FT | 508. | 508 . | 508 | 508 | 508. | | BAR PRESS IN-HG DRY BULB DEG F WEI BULB DEG F REL HUMIDITY PCT CUKR BHP HP CORR BMEP PSI | 29.28
81.
64.
39.
116.5
45.0 | 29.16
70.
70.
71.
116.7
45.0 | 29.06
84.
76.
70.
119.3
46.0 | 28.96
93.
79.
54.
121.2
46.8 | 29.12
82.
75.
72.
118.2 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC: VOL. % PCT BSFC Alr FLOW LB/MIN | 53.71 | 53.04 | 53.92 | 53.80 | 54.77 | | | 114.0 | 111.0 | 114.0 | 114.0 | 111.0 | | | 18.9 | 18.7 | 18.9 | 18.9 | 18.3 | | | .4609 | .4546 | .4521 | .4439 | .4635 | | | 37.5 | 37.4 | 36.7 | 36.2 | 36.7 | | STOICH, F/A | 0691 | .0691 | 0691 | 0691 | 0691 | | MLAS: F/A | 0239 | .0236 | 0245 | 0249 | 0249 | | CALC: F/A | 0249 | .0243 | 0250 | 0250 | 0250 | | % DIFF. PCT | 4 36 | 2.82 | 1.76 | 82 | 35 | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUPPLY DEG F FUEL SUPPLY DEG F FUEL SUPPLY DEG F FUEL COOLER DEG F INTAKE AIR (L) DEG F CHARGE AIR (R) DEG F EXH STACK (L) | 1111196951344892154420215477645
6611116655883420215477645
6556666655561 | 11199768177128817445822279421314558107712881744582227942134 | 7890186666555523168865776259995940
119088655552316886577625995940
561111155586659337995940 | 178275911059463423675687499854688852
6658499854688852 | # 11 | | OIL PRESSURE PSI RAIL PRESSURE PSI BOOST (R) PSI BUOST (L) PSI IN-H20 EXH. PRESS (R)PSI EXH. PRESS (R)PSI TURB IN (L) IN-HG TURB IN (L) IN-HG FUEL PRESS PSI EHULSTON PRESS PSI EHULSTON PRESS PSI HATER PRESS PSI | 557711552 | 8858 11152 | 040000000 | 0555601552 | 0047-4457 | | | 218020 | 2123 2120 20 | 621240 210000 | 6581240 21021 | 49-445 A1-0000 | | | 60020 | 20 20 20 | 100000 | 20021 | 00 6 | | HYDROCARBONS PPHC CARBON MONOXIDEPPH NITRIC OXIDE PPH NITRIGEN OXIDESPPH CARBON DIOXIDE PCT OXYGEN PCT SMUKE OPACITY PCT | 175
263
330
360
53.6
13.6 | 149
613
275
313
5 1
16 0
3 6 | 229
221
240
5 3
9 4 0 | 146.
263.
215.
249.
5.4
15.4 | 267
267
2880
2855
1916
115 | | HC MASS GM-HR CO MASS GM-HR NOX HASS GM-HR USHC GM/BHP-HR BSCO GM/BHP-HR USHC GM/BHP-HR | 84.052 | 72.323 | 71.784 | 70 145 | 46.490 | | | 243.65 | 574.23 | 212.32 | 242 91 | 250.79 | | | 607.14 | 611.45 | 514.93 | 509 42 | 520.79 | | | .7212 | .6198 | 6019 | 5788 | 520.79 | | | 2.0906 | 4.9214 | 1.7802 | 2 0043 | 2.1223 | | | 5.2097 | 5.2405 | 4.3176 | 4 2035 | 4.4018 | TABLE C-12. ENGINE TEST RESULTS, CUMMINS ENGINE, 1200 RPM, 25% WATER | DYNAHOMETER CO
H/C RATIO: 1.7 | | | | | | 35 3 A | 1 60f | |--|--|---|---|---|---|--------|-------| | RUN NUMBER
NOM. WATER PCT | | 193.
25. | 229
25 | 243
25 | 257 .
25 . | | | | ENGINE SPEED
OBS. TORQUE | | 1200
508 | 1200.
508 | 1200
508 | 1200
508 | | | | BAR PRESS. DRY BULB WEI BULB REL HUMIDITY CORR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 17
77 70 71
117 1
45 2 | 29.04
98.
76.
58
119.5
46.1 | 28.95
94.
80.
55.
121.5
46.9 | 29.11
82.
73.
65.
117.9
45.5 | | | | FUEL FLOW
WATER FLOW
CALC: VOL: X
BSFC
AIR FLOW | LB/HR
CC/MIN
PCT.
LB/BHP-HR
LB/MIN | 53.33
143.8
22.9
4555
37.2 | 53.66
159.0
24.6
.4491
36.5 | 53.75
159.0
24.5
4423
36.0 | 53.57
159.0
24.6
4544
36.5 | | | | STOICH, F/A
MEAS F/A
CALC, F/A
% DIFF | PCT | 0691
0239
0248
3.84 | 0691
.0245
.0240
-1.99 | 0691
0249
0252
1.18 | .0691
.0244
.0236
-3.42 | | | | COULANT IN COULANT OUT | DECEMBER FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 111979409259012224802245364531085879049259011775387358092906777855873587555555555555555555555555555 | 7858277888276239101117753890581150239101155589658067181 | 1847592265845239758480230342622
9992227774458480230342622
11111999922239758480230342622 | 1/840
1/840
1/840
1/97
1/97
1/97
1/97
1/97
1/97
1/97
1/97 | | | | OIL PRESSURE KAIL PRESSURE BOOST (R) BOUST (L) INLET VAC (R) EXH PRESS (R TURB IN (R) LURB IN (R) LURB IN (R) LURB IN (L) | PSI
PSI
PSI
PSI
IN-H20
)PSI
)PSI
IN-HG
IN-HG
PSI
PSI
PSI
PSI | 0.6581150
0.6581150
0.000
1.000
1.000
1.000 | 055520140
401040 010000
60
100
100
100
100
100
100
100
10 | 05460152
12460152
10020 | 051251251
210020
21020 | | | | HYDROCARBONS CARBON MONOXID NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN SMOKE OPACITY | PPMC
EPPM
PPM
BPPM
PCT
PCT
PCT | 250
749
275
325
36 0
9 | 193
316
216
250,
513
9.5
3.1 | 211
417
210
250
15 9
15 3 |
132
383
215
25
15
15
1 | | | | HC MASS
LO MASS
NOX MASS
ESHO
ESHO
HSNO | GM-HR
GM-HR
GM-HR
GM/HHP-HR
GM/BHP-HR
GM/BHP-HR | 120 00
690 83
657 90
1 0248
5 8998
5 6186 | 96 372
303 46
555 93
8067
2 5400
4 6525 | 100 63
381 53
556 28
8281
3 1394
4 5773 | 66.775
372.81
557.48
5666
3.1626
4.7291 | | | TABLE C-13. ENGINE TEST RESULTS, CUMMINS ENGINE, $1800\ \text{RPM}$, BASELINE | DYNAMOMETER CO
H/C RATIO: 1.7 | NSTANT: 3000 | AP1 | GRAVITY | OF DIES | EL FUEL: | 35.3 AT | 60F | | |---|--|--|--|---|--|---|--|---| | RUN NUMBER
NOM. WATER PCT | | 171.
0 | 177 | 183 | 188 | 195. | 201 | 216
0 | | ENGINE SPEED | RPM
LB-FT | 1800
1257 | 1800
1257 | 1800
1257 | 1200
508 | 1800
1257 | 1800
1257 | 1800
1257 | | BAR PRESS
DRY BULB
WET BULB
REL HUMIDITY
CURR BHP
CORR BMEP | IN-HG
DEG F
PCT
HP
PSI | 29 29
92
73
65
436 2 | 29 16
91
73
42
441 7
113 7 | 28 96
81
76
80
443 9
114 2 | 29 11
73 68
78
116 2
44 8 | 29 22
79
74
79
436 1
112 2 | 29 26
78
72
75
433 9
111 6 | 29 10
89
76
55
444 3
114 3 | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
Alk FLOW | LB/HR
CC/MIN
PCI
LB/BHP-HR
LB/MIN | 181 93
0 0
0 0
4171
83 5 | 179 14
0 0
0 0
4056
82 6 | 180 80
0 0
0 0
4073
83 7 | 55.30
0.0
0.0
4761
38.0 | 179 19
0 0
0 0
4109
85 0 | 180.07
0.0
0.0
4151
84.5 | 177 08
0 0
0 0
3786
81 4 | | STOICH, F/A
MEAS, F/A
CALC, F/A
% DIFF. | PCT | .0691
.0363
.0335
-7.63 | 0691
0361
0324
-10.37 | .0691
.0360
.0341
-5.24 | 0691
0242
0248
2 37 | .0691
.0351
.0347
-1.15 | 0691
0355
0348
-1.86 | .0691
.0363
.0342
-5.58 | | COOLANT OUT FUEL RETURN FUEL SUPPLY FUEL GOOLER TURB. INLET (L) COMP. OUT (L) CHARGE AIR (R) COMP. OUT CHARGE AIR (R) | DEG F
DEG F
DEG F
DEG F
DEG F | 781539963571844668866884525516925 | 1121119967087743055647533939249
192111996743797211055647533939249
19211988199999999999999999999999999999 | 18687529490202452945194668752999999999999999999999999999999999999 | 1781
1781
1781
1781
1782
1781
1782
1783
1783
1783
1783
1783
1783
1783
1783 | 147520597354900020585053008126
11119907221190888302053008126
999999999999999999999999999999999999 | 11893295821431207880841185710185788888341118579989999999999999999999999999999999 | 787-07-69-49-54-22-23-15-29-45-19-5-387-83-1
781-159-89-54-22-23-15-29-45-1-25-5-1-25-5-1-25-5-1-28-5-5-1-25-5-1-28-5-5-1-28-5-5-29-5-5-1-28-5-5-29-5-5-2-2-1-28-5-5-29-5-5-2-2-1-28-5-5-2-2-1-28-5-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | | OIL PRESSURE KAIL PRESSURE BOOST (A) INLET VAC. (R) EXH. PRESS. (L. IVAN IN (L.) INTER IN (L.) FUEL PRESS. EMULSION PRESS FUEL SUPPLY WATER PRESS. | PSI
PSI
PSI
PSI
IN-H20
PSI
PSI
IN-HG
PSI
PSI
PSI
PSI
PSI | 76 0 0 110 5 3 3 6 0 0 120 20 10 20 0 | 76. 0
75 3
10 3
11 3
12 7
3 6
0
10 0
10 0 | 76 0 25 0 3 5 0 0 10 0 20 0 10 0 0 0 0 0 0 0 0 0 0 0 | 21 4
100 2
100 2
100 2 | 76 0 2 B 110 B 13 15 20 100 20 20 | 76 0
75 0
11 1
13 9
13 9
10 0
100
100 | 744 100 110 11 100 100 100 20 100 20 | | HYDROCAKBONS CARBON MONOXIDI NITRIC OXIDE NITROGEN OXIDE: CAKBON DIOXIDE OXYGEN SMUKE OPACITY | PPMC
EPPM
PPM
SPPM
PCT
PCT
PCT | 100.
306.
900.
863.
7.2
10.5 | 40
163
950
950
7.0
10.3
0.0 | 130
635
870
880
7.3
11.5
6.9 | 54
212
288
313
5 3
15 8 | 78
281
850
838
7
12
5 | 70
550
850
72
125
9 | 82
1288
730
74
150
6 | | HC MASS
CU MASS
NOX MASS
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 121 64
704 86
3527 4
2789
1 6161
8 0876 | 49 507
384 81
3789 1
1121
8712
8 5787 | 154.76
1431.4
3719.8
3486
3.2248
8.3803 | 26.649
203.00
535.94
2294
1.7475
4.6137 | 89.849
615.43
3371.8
2060
1.4113
7.7323 | 81.249
1206.3
3339.2
1873
2.7802
7.6960 | 95.154
274.58
2949.6
2142
6181
6.6393 | TABLE C-13. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, BASELINE (CONT'D) | DYNAMOMETER CON
H/C RATIO: 1.78 | STANT: 3000 | API | GRAVITY | OF DIES | EL FUEL: | 35.3 A1 | 60F | |--|---|--|--------------------------------------|--|--|--|--| | NUN NUMBER | | 217 | 223 | 231 . | 237. | 245 | 251 | | NOM. WATER PCT. | | 0 | 0 | 0 | 0 | 0 | 0 | | ENGINE SPEED | RPM | 1800 | 1800 | 1800 | 1800 | 1800 | 1800 | | OBS. TORQUE | LB-FT | 1257 | 1257 | 1257 | 1257 | 1257 | 1257 | | HAR PRESS. DRY BULB WET BULB REL HUMIDITY CURR BHP CURR BMEP | IN-HG | 29, 19 | 29.24 | 28 95 | 29 00 | 28.94 | 26 91 | | | DEG F | 80, | 89. | 83 | 92. | 88. | 78 | | | DEG F | 73, | 76. | 75 | 80. | 76 | 78 | | | PCT | 73, | 55 | 69 | 60 | 58 | 59 | | | HP | 436, 3 | 440.9 | 442 5 | 448.6 | 445 3 | 447.3 | | | PSI | 112, 3 | 113.5 | 113 9 | 115.4 | 114 6 | 115.1 | | FUEL FLOW | LB/HR | 179 60 | 179.37 | 180.41 | 180 68 | 182 23 | 181 73 | | WATER FLOW | CC/MIN | 0 0 | 0.0 | 0 0 | 0 0 | 9 0 | 0 0 | | CALC. VOL % | PCT | 0 0 | 0.0 | 0 0 | 0 0 | 0 0 | 0 0 | | ESFC | LB/BHPHR | 4116 | 4068 | 4077 | 4028 | 4093 | 4063 | | AIR FLOW | LB/MIN | 83 7 | 83.1 | 81.9 | 81 2 | 82 1 | 80 6 | | STOICH F/A | PCT | .0691 | 0691 | 0691 | .0691 | 0671 | 0691 | | MEAS F/A | | .0358 | 0360 | 0367 | .0371 | 0376 | 0376 | | CALC F/A | | .0343 | 0350 | 0336 | .0354 | 0358 | 0347 | | % DIFF | | -4.12 | -2.85 | -B 39 | -4.51 | -3 19 | -7 62 | | COOLANT IN CUGLANT OUT OIL SUMP FUEL SUPPLY FUEL SUPPLY FUEL COOLER 1NTAKE AIK 1NTAKE INLET (R) COMP. OUT (R) COMP. OUT (R) COMP. OUT (R) CHARGE AIK (R) EXH. STACK (L) WATER INLET UELL AIK EXHAUST 3R EXHAUST 3R EXHAUST 5L 6L | DEG F | 114680601953566441620487345363
1211 992218878883129087445363
997821877 | 10602/279874: 188/29036-10/18450-109 |
781059184622299008842312382120695
78105918462229900884231238211214
999999999999999999999999999999999 | 458956026586332095854141966106
112111 | 11211198752112039583874632503
198045198752112039583874632503
1997339921985241874632503 | 048946098742013222800127253886
112111 1 992211881 9934235062225 | | OIL PRESSURE KAIL PRESSURE BOOST (R) POUST (L) INLET VAC (R) EXH PRESS (R) EXH PRESS (L) TURB IN (R) TURB IN (L) FUEL PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS | PS1
PS1
PS1
PS1
PS1
HS1
HG
IN-HC
IN-HC
PS1
PS1
PS1 | 78 0 2211260110 110 120 100 3 0 | 77500 14 1100 100 20 100 20 | 76571500
11000
1000
1000 | 75
10
10
14
11
19
20
10
20
20 | 76 0 0 0 1 10 0 0 1 0 0 0 0 0 0 0 0 0 0 0 | 775006
1190020
10020 | | HYDROCAKEUNS
CARBON MUNOXIDE
NITRIC OXIDE
NITROGEN OXIDES
CANBUN DIOXIDE
OXYGEN | | 61
246
650
738
7 4
14 0 | 2535
638
638
7
11 9 | 50
246
605
623
7
12.7 | 281
675
698
7 6
12 8 | 250
573
578
7 7
10 3 | 2845
2845
2860
2860
2860
2872
125 | | SMUKE OPACITY HC MASS LU MASS NOX MASS HSHC BSCO RSNU | GM-HR | 71 696 | 63.377 | 60 .193 | 69 172 | 107 48 | 34.118 | | | GM-HR | 547 33 | 551.08 | 561 .61 | 607 75 | 538 52 | 632.33 | | | GM-HR | 2949 4 | 2483.0 | 2589 .0 | 2842 1 | 2322 1 | 2372.5 | | | GM/EHP-HR | 1643 | .1437 | .1360 | 1542 | 2414 | 0763 | | | GM/EHP-HR | 1 2544 | 1.2498 | 1.2692 | 1 3547 | 1 2094 | 1.4137 | | | GM/EHP-HR | 6 7594 | 5.6311 | 5.8488 | 6 3354 | 5 2151 | 5.3042 | TABLE C-14. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 5% WATER | DYNAMOMETER CO
H/C RATIO: 1.7 | NSTANT: 3000 | API | GRAVITY | OF DIES | EL FUEL: | 35.3 AT | 60F | |--|--|--|---|--|---|---|--| | RUN NUMBER
NOM. WATER PCT | | 172
5 | | 196 | | | | | ENGINE SPEED
OBS TORQUE | RPM
LB-FT | 1800
1257 | 1800
1257 | 1800
1257 | 1800
1257 | 1800 | 1800
1257 | | BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BHEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 .27
82 .
73 .
65 .
437 .6
112 .6 | 28.95
94.
82.
60.
453.4
116.7 | 29 23
79
74
74
437 0
112 5 | 29 21
80 73 72 72 437 2 | 28.96
83.
75.
69.
442.9
114.0 | 28.95
89.
76.
55.
446.6
114.9 | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
AIR FLOW | LP/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN | 179.89
82.8
4.8
4111
82.9 | 168.98
82.8
5.1
.3727
80.8 | 178 13
82 8
4 9
4076
83 5 | 178.26
82.8
4.9
.4078
83.2 | 179.46
82.8
4.8
4052
81.7 | 181 31
82 8
4 8
4060
79 7 | | STOICH, F/A
MEAS, F/A
CALC, F/A
X DIFF | PCT | .0691
.0362
.0326
-9.98 | 0691
0348
0345
- 98 | 0691
0355
0343
-3.49 | 0691
0357
0343
-4.00 | | 0691
0379
0358
-5 61 | | COOLANT IN COOLANT OUT OIL SUMP FUEL SUPPLY FUEL SUPPLY FUEL COOLER INFAKE AIR INLET (R INF | DEG F
DEG F
DEG F
DEG F
DEG F
DEG F | 882631952919529187
882057988329509883748500529114
992221187
999999999999999 | 1121159378500342394709169175535
1211594795644791089423149169175535
121159178500342394709169175535 | 247722914354904042595461554679
247722914354904042595961554679 | 326792127453473243955499160937
1121119722211778882015499160937 | 1846275013196435307/36238
9922219930999999999999999999999999999999 | 46025711128552237762615688582378
1182157111285522377762615688582378
279222188
2792224 | | OIL PRESSURE KAIL PRESSURE BOOST (R) LOOST (L) INLET VAC (R) EXH. PRESS (R EXH. PRESS (L TURB IN (L) FUEL PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS EMULSION PRESS | PSI
PSI
PSI
IN-H2D
PSI
PSI
IN-HG | 758 0 9 7 3 3 5 0 8 11 9 22 1 0 20 20 60 | 76 07913508
1103 1198
1198 15020 | 76 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 | 77
80
11
10
10
13
8
14
6 | 76
76
10
10
14
15
11 | 76 0
80 6
10 8
15 8 | | TURB IN (L)
FUEL PRESS
EMULSION PRESS
FUEL SUPPLY
WATER PRESS | IN-HG
PSI
PSI
PSI
PSI
PSI | 100
100
60 | 9.8
19.
150.
50. | 9 8
20
100
50 | 11.0
10.0
20
100
50 | *6 à | 15 8
10 55
20
100
20 | | HYDROCARBONS CARBON HONOXIDI NITRIC OXIDE NITRIGEN OXIDE: CARBON DIOXIDE OXYGEN SMOKE OPACITY | PPMC
PPM
PPM
PPM
PCT
PCT
PCT | 110
263
925
875
10 0 | 150
592
870
915
10.5 | 95
246
850
875
12.5
4.2 | 229
742
632
13.4
13.4 | 219
625
645
13.2 | 90
219
640
648
77
9
4 2 | | HC MASS
CU MASS
NOX MASS
BSHC
BSCO
FSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HK
GM/BHP-HR
GM/BHP-HR | 136.23
619.35
3790.3
3113
1.4154
8.6618 | 165.36
1231.8
3869.4
3647
2.7169
8.5346 | 110.81
542.95
3681.6
2535
1.2423
0.4237 | 50.392
505.92
2606.0
.1336
1.1573
5.9613 | 65.327
497.47
2774.6
.1475
1.1232
6.2647 | 102.49
470.61
2544.7
2295
1.0537
5.7870 | TABLE C-15. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 10% WATER | DYNAMOMETER CONS
H/C RATIO: 1.78 | TANT: 3000 | API G | RAVITY C | F DIESEL | FUEL: 3 | 5.3 AT 6 | 0 F | |---|--|--|--|---|--|--|--| | RUN NUMBER
NOM, WATER PCT. | | 173.
10 | 185.
10. | 197.
10. | 219.
10. | 233. | 247
10 | | ENGINE SPEED R | PM
B-FT | 1800
1257 | 1800
1257 | | | 1800
1257 | 1800
1257 | | DRY BULB D
WET BULB D
REL HUMIDITY P
CORR BHP H | N-HG
EG F
ECT
P
SI | 29 25
82
73
65
438 5
112 8 | 28 92
93
80
57
450 9
116 0 | 29.23
79.
74.
79.
437.0
112.5 | 29, 23
82,
73,
65,
437, 1
112, 5 | | 28.95
89
76.
55.
447 8
115.2 | | BSFC L | B/HR
C/MIN
CT
B/BHP-HR
B/MIN | 179.18 1
175.1
9.7
4087
81.7 | 179.68
171.8
9.5
3985
80.8 | 177 73 1
175 1
9 8
4067
82 6 | 78.31 1
171.8
9.6
4080
82.2 | 80.7 | 79 91
175 1
9 6
. 4018
79 1 | | | PCT | 0691
0365
0332
-9 21 | 0691
0370
0349
-5.76 | 0491
0358
0348
-2.85 | 0691
0362
0343
-5.24 | .0691
.0367
.0346
-5.67 | 0671
0379
0369
-2 71 | | EXHAUST 2L
EXHAUST 3L
EXHAUST 4L
EXHAUST 5L
EXHAUST 6L | DEG F
DEG F
DEG F
DEG F | 882932065586335578426167271065
182159165586335578426167271065 | 158468440954221966061643515112
194433990889302913840113
1992211871 99989999971 |
24792221983961194956325378
112111 1 1992228883961194956325378
119992211983961194956325378 | 126792034242665074710766828669
19234242665074710766828669
19792211777 999889998889 | 768911343585750118687253230300653
18342299118687253230300653
1974221177 9998880002 | 1 1211 1 9922111881 99999999999999999999 | | OIL PRESSURE
KAIL PRESSURE
BOOST (R)
BOOST (L)
INLET VAC (R) | PSI
PSI
PSI
PSI
IN-H2O | 76
84
10
10
12
13 | 76.
83.0
10.5
11.0
13.0 | 76
83 0
10 6
10 8
13 4 | 77
85
10
10
13
13 | 76
83
10
10
14
2 | 76
85
0
10
2
11
15
7 | | OIL PRESSURE KAIL PRESSURE BOOST (R) FUOST (L) (R) EXH PRESS (R) EXH PRESS (L) TURB IN (L) FUEL PRESS EMULSION PRESS FUEL SUPPLY WATER PRESS HYDROCARBONS | FSI
IN-HG
IN-HG
PSI
PSI
PSI
PSI
PSI | 10 20
20 20
10 20
10 20 | 10 9
920
100
50 | 11 0
9 8
20
100
50 | 10 8
20
100
50 | 10 5
20
100
20
100
65 | 100
20
100
65 | | HYDROCARBONS CARBON MONOXIDE NITRIC OXIDE NITROGEN OXIDES CARBON DIOXIDE OXYGEN SMUKE OPACITY | PPMC
EPPM
PPM
SPPM
PCT
PCT
PCT | 38
476
938
900
7 1
10 5 | 166
592
930
940
70
10
4 5 | 91
488
888
900
7 5
12 0 | 58
212
775
630
7 4
14 0
3 4 | 193
663
695
7 5
12 8 | 70
202
683
683
683
8 0
11 8 | | HC MASS
CO MASS
NOX MASS
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/XHP-HR
GM/BHP-HR
GM/BHP-HR | 46.217
1093.0
3978.3
1054
2.4929
9.0734 | 192.62
1293.9
4194.5
4272
2.8698
9.3034 | 104 78
1057 5
3892 7
2397
2 4197
8 9068 | 67,210
469,53
2678,2
1538
1,0720
6,1276 | 61 831
419 70
2998 4
1395
9471
6 7662 | 76 989
418 81
2744 6
1719
9353
6 1294 | TABLE C-16. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 15% WATER | DYNAMOMETER CON
H/C RATIO: 1.78 | ISTANT: 3000 | API | GRAVITY | OF DIESI | LL FUEL: | 35 3 AT | 60F | |---|--|--|--|---|---|--|---| | RUN NUMBER
NOM. WATER PCT. | | 174.
15. | 186
15 | 198.
15. | 220 .
15 | 234
15 | 248
15 | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 1800
1257 | 1800.
1257. | 1800
1257 | 1800
1257 | 1800
1257 | 1800
1257 | | BAR PRESS. DRY BULB WET BULB REL HUMIDITY CORR BHPP CORR BMEP | IN-HG
DEG F
PCT
HP
PSI | 29, 22
89,
73,
47,
439, 4
113, 1 | 28,90
100.
94.
80.
462.6 | 29 24
92 76
76
438 2
112 8 | 29.25
86.
76.
63.
440.2
113.3 | 29.00
67.
77.
64.
444.0
114.2 | 28.96
95.
77.
44
448.9
115.5 | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
AIR FLOW | LB/HR
CC/HIN
PCT
LB/BHP-HR
LB/HIN | 178.39
284.9
14.9
4060
81.0 | 178.32
288.5
15.0
3855
79.3 | 176 90
288 5
15 2
4037
81 4 | 176 82
288 5
15 2
4017
80 2 | 177 37
277 7
14 6
3995
79 5 | 179.00
284.9
14.8
.3987
77.6 | | STOICH, F/A
MEAS, F/A
CALC, F/A
% DIFF. | РСТ | 0691
0367
0332
-9.50 | 0691
0375
0353
-5.76 | 0691
0362
0348
-3 83 | .0691
.0368
.0349
-5.00 | .0691
.0372
.0349
-6.09 | .0671
.0384
.0372
-3.19 | | COOLANT IN COOLANT OUT OIL SUMP FUEL SUPPLY FUEL RETUPPLY FUEL COOLER TINES INLET (R) COMP. OUT (R) CHARGE AIR (R) EXH. STACK EXHAUST 3R EXHAUST 3R EXHAUST 3R EXHAUST 5R 5L EXHAUST 5L EXHAUST 5L | 00000000000000000000000000000000000000 | 892023191186338511530324871821
782159182322998709191824871821
14211 1 992211771 989899998899 | 45947875994323328951158381442
781158192933339998192832538381442
1121111 992221771 999899999999 | 781157122487781662960682948
7811571861111387508979680497789
11211 1 972211771 8888899998888 | 4691115276452501846763136962831
78111591812228981846763136962831
12111 1 P922211771 9898899788891 | 56922536411;33906428484253400277
784315918411;33906428484253400277
12111 1 9922211771 989891529991 | 4504495655420000086019617186072
782159195477990909311910739113
11211 1 0922011871 90999999999 | | DIL PRESSURE
RAIL PRESSURE
BOOST (R)
BOOST (L)
INLET (AC. (R)
EXH. PRESS. (R) | PSI
PS1
PS1
PS1
IN-H20
PSI | 75.
90.0
10.3
10.9
12.0 | 76.
88.0
10.2
10.8
12.8 | 76 03812551
900113 2551 | 76
90.0
10.4
10.5
13.5 | 76
88.0
10.2
10.1
14.1 | 76.9
90.9
10.5
15.4 | | OIL PRESSURE RAIL PRESSURE BOOST (R) INLE! VAC (R) EXH. PRESS (R) EXH. PRESS (L) TURB IN (L) FUEL PRESS EMULSION PRESS EMULSION PRESS FUEL SUPPLY WATER PRESS | PSI
IN-HG
IN-HG
PSI
PSI
PSI
PSI
PSI | 100
200
100
60 | 1900000
100000
100000 | 18 5
9 1
20
100
50 | 100
20
100
40 | 100
100
100
100
100 | 1000 | | HYDROCARE'NS CARBON MONDXIDE NITRIC OXIDE NITROGEN OXIDES CARKON DIOXIDE OXYGEN SMUKE OPACITY | PPMC
PPM
PPM
PPM
PCT
PCT
PCT
PCT | 46.
212.
1018.
783.
7.2
10.3 | 150
571
988
975
9
8 7
8 7 | 94
468
950
963
72
12
10 | 54
186
675
813
7.6
11.9 | 65.
695.
708.
73.6
13.5 | 67
163
700
740
8 1
11 6
3 0 | | HC MASS
NOX MASS
BSHC
BSHC
BSHC
BSHC
BSHC
BSHC
BSHC
BS | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 55.774
485.17
4362.4
1269
1.1041
9.9733 | 171.43
1222.3
6476.6
2.6425
14.009 | 107.30
1009.5
4423.2
2449
2.3039
10.208 | 60.978
399.94
3662.0
1385
9086
8.3195 | 73.797
279.54
3228.9
1662
6296
7.2722 | 72.733
333.28
3051.5
3424
6.7974 | TABLE C-17. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 20% WATER | DYNAMONETER CO
H/C RATIO: 1 7 | NSTANT: 3000 | AP I | GRAVITY | OF DIES | EL FUEL | 35 3 AT | 60F | |--|--|---|--|--|--
--|---| | RUN NUMBER
NOM WATER PCT | | 175 | 187
20. | 199
20 | 221
20 | 235
20 | 249
20 | | ENGINE SPEED
OBS. FORQUE | RPM
LB-FT | 1880
1257 | 1800
1257 | 1900
1257 | 1800
1257 | 1800
1257 | 1800
1257 | | BAR PRESS DRY BULB WET BULB REL HUMIDITY CORR BHPP CORR BMEP | IN-HG
DEG F
DEG F
PCI
HP
PSI | 29,21
90
73,
44,
440 5
113 4 | 28.88
98.
84.
56.
455.4
117.2 | 29 24
82 76 76 76 437 6
112 6 | 29.25
86.
76.
63.
439.6
113.1 | 29 03
87
77
64
445 8
114 7 | 28,95
79
79
45
451 2
116 1 | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN | 177 48
398 0
19 7
4029
79 6 | 178 82
394 5
19.4
3927
78 0 | 176 82
394 5
19 7
4040
80 8 | 176.64
394.5
19.7
.4018
80.4 | 175 61
384 0
19 3
3939
77 8 | 178, 35
374, 5
19, 5
3752
76, 2 | | STOICH, F/A
MEAS, F/A
CALC, F/A
% D1FF | PCT | 0691
0371
0334
-10 00 | 0691
0382
0356
-6.80 | 9691
0365
0357
-2.20 | 0691
0366
0356
-2 77 | 0691
0376
0358
-4 88 | .0691
.0390
.0372
-4 66 | | STOICH F/A HEAS F/A CALC F/A Z DIFF COOLANT IN CUOLANT DUT OIL SUMP FUEL RETURN FUEL RETURN FUEL RETURN FUEL COOLER TURB INLET (L' COMP OUT (L) COMP OUT (L) COMP OUT (L) COMP INLET (L' COMP INLET (L' COMP INLET (L') I | DEGG F
DEGG F
DEGG F
DEGG F
DEGG F
DEGG F | 7831024216967238424110322368344
783159190122997609988795168344
19922112771 98988999988890 | 1421111 99221177119898999988999 | 157882017965670593089318869233
12111 1 88221177 88887588295678
88888888888888888888888888888888888 | 417175168H18448218651844267242 | 1 12115 1 90 1222 1 150 2 30 88 9 9 1222 1 150 2 30 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 9 9 88 9 | 451530681532124878192832781440
11211111 992211271 787881529982 | | OIL PRESSURE RAIL PRESSURE BOOST (R) MIDST (R) INLET VAC (R) EXH PRESS (R EXH PRESS (L) TURB IN (L) FUEL PRESS EMULSION | PSI
PSI
PSI
IN-H20
PSI
IN-HG
IN-HG
PSI | 75
97
10
10
11
10
10
10
10
10
10
10
10
10
10 | 76
98
10
12
10
10
20
100
100 | 76
96
10
110
12
9
25
1
1
9
20 | 77
95 0
10 0
13 3
15
10 0
20 | 76
96
90
10
13
2
10
9
0 | 76799031500
10900
1000 | | FUEL SUPPLY
WATER PRESS | PSI
PSI | 60 | 65. | 1 0 0
6 0 | 1 0 0
60 | 62
100
20 | 65. | | HYDROCARBONS CARBON MONOXIDE NIRIC OXIDE NIRICOXIDE CARBON DIOXIDE DXYGEN SMUKE OPACITY | PPMC
PPM
PPM
PCI
PCI
PCT
PCT | 47
163
1125
1100
7 2
10 2
0 0 | 144
281
1025
1050
7
8 8
4 0 | 95
448
1000
1013
7 7
11 9
2 7 | 55
164
880
705
7
11 8
2 4 | 56
148
733
770
7 8
12 8
3 3 | 69
154
688
8 1
11 6
2 8 | | HC MASS
CI MASS
NOX MASS
ESHC
BSCO
BSCO
BSCO | GM-HR
GM-HR
GM-HR
GM/PHP-HR
GM/PHP-HR
GM/PHP-HR | 55.778
368.94
5115.1
.1266
.8375
11.611 | 163.08
598.46
5482.2
3581
1.3143
12.039 | 106 31
942 87
4872 0
2429
2 1545
11 133 | 61.570
344.31
3304.0
1401
2832
7.5156 | 61.964
307.07
3601.3
1390
6888
8.0784 | 74.740
312.68
3149.8
1656
6930
7.0691 | TABLE C-18. ENGINE TEST RESULTS, CUMMINS ENGINE, 1800 RPM, 25% WATER | DYNAHOMETER CO | NSTANT: 3000 | API | GRAVITY | OF DIES | EL FUEL: | 35.3 AT 60 | F | |--|--|---|--|---|---|---|---| | RUN NUMBER
NOM. WATER PCT | | 176
25 | 200 .
25 . | 222
25 | 236
25 | 250
25 | | | ENGINE SPEED | RPM
LB-FT | 1800
1257 | 1800
1257 | 1800
1257 | 1800
1257 | 1800
1257 | | | HAR PRESS DRY BULB WET BULB REL HUMIDITY CORR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 19
90
73
44
440 3
113 3 | 29 .26
81 .
75 .
76 .
436 .9
112 .4 | 29 25
86 76 63 441 9
113 7 | 29.03
91
79
59
445.9
114.7 | 28 92
98
77
39
450 7
116 0 | | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
Alk FLOW | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN | 178.04
478.9
22.8
4044
79.8 | 176.54
494.2
23.5
4041
80.1 | 176 64
501 7
23 7
3998
77 7 | 176 71
501 7
23 7
3963
77 9 | 179 43
501 7
23 4
.3981
76.1 | | | STOICH F/A
MEAS F/A
CALC F/A
Z DIFF | PCT | .0691
.0372
.0334
-10.05 | .0691
.0368
.0356
-3 00 | 0691
0379
0358
-5 39 | 0691
0378
0362
-4 07 | 06/1
0393
0369
-6 10 | | | COOLANT OUT COOLANT OUT COOLANT OUT COOLANT OUT COOLANT COOLANT COUT COUT COUT COUT COUT COUT COUT COMP. COM | DECOMPANY FERRER FOR FERRER FER | 7830050022552119464343493078454
199022117711 88888899888 | 11211126327893807983112643278939027397985221879931126457789387554778798522187938798522 | 10727720144194482201889755550
107277201441944822018975578
1072778 | 1785929
11149539401988560246897291885602498888892057724 | 6617427994230227190749775997948
112111117922271900897990317790 | | | OIL PRESSURE KAIL PRESSURE BOOSI (R) BOOSI (R) FOR FRESS (R) FRESS (R) FOR FRESS (R) FUEL PRESS FUEL PRESS (R) FUEL FUEL FUEL FUEL FUEL FUEL FUEL FUEL | PSI
PSI
PSI
IN-H20
)PSI
IN-HG
IN-HG
PSI
PSI
PSI
PSI | 752
1029
9 7 3500
10 220
10 20
10 60 | 76 0 10 0 0 10 0 0 12 7 15 10 0 0 10 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 0 10 | 77 0
107 0
10 0
10 0
10 0
20 1
10 0
20 1 | 76 0 112 0 7
10 0 6 1 1 1 0 0 0 8 8 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 | 765995115008
10708111508
10708111508 | | | HYDROCARBONS CARBON HONDXID NITRIC OXIDE NITRIGEN OXIDE CARBON DIOXIDE OXYGEN SMUKE OPACITY | PPMC
EPPM
SPPM
SPPM
PCT
PCT
PCT | 163
1188
1163
10.0
0.0 | 100
1113
1113
1113
7 7
11 9 | 55
1770
750
7 5
12 5
12 2 | 151
788
795
7 9
13 . 3 | 69:
148:
763:
8:0
11:3 | | | HC MASS
CU MASS
NOX MASS
HSHC
BSCO
HSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 55.392
370.11
5662.8
1258
6406
12.862 | 111.82
900.50
5600.0
.2560
2.0613
12.819 | 61.187
308.49
3712.8
.1385
.6982
8.4027 | 60.594
311.64
4021.8
.1359
.6989
9.0196 | 75.734
303.71
3517.1
.1680
.6743
7.8030 | | TABLE C-19. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 500 RPM | DYNAMOMETER CON
H/C RATIO: 1.8 | NSTANT: 2000. | API | GRAVITY | OF DIES | EL FUEL: | 33.9 AT | 60F | | |--|---|---|---|--|---|--|---|---| | RUN NUMBER
NOM. WATER PCT | | 1
0 | 7
0 | 13. | 47 | 48
5 | 49
10 | 50
15 | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 600
386 | 600
386 | 600
386 | 600.
386. | 600.
386. | 600
386 | 600
386 | | BAR PRESS. DRY BULB WET BULL REL HUMIDITY CORR BHP CORR BMEP | IN-HG
DEG F
PCT
HP
PSI | 29,26
72,
64,
65,
43,6
16,1 | 29.30
70.
63.
68.
43.6
16.1 | 29.07
72.
66.
73.
44.6
16.5 | 29.02
72.
59.
46.
44.5
16.4 | 29.03
78.
60.
34.
44.4
16.4 | 28.99
79.
61.
35.
44.6
16.5 | 28.94
59.
56.
44.
44.4
16.4 | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 24.89
0.0
0.0
.5712
24.0
24.7 | 24.41
0.0
0.0
.5604
23.1
23.6 | 24.60
0.0
0.0
.5515
22.6
23.0 | 23 82
0 0
0 0
5358
22 5 | 23.43
11.5
5279
21.2 | 24 . 22
20 . 6
8 . 7
. 5431
22 . 1 | 24.60
33.8
13.3
5540
21.2 | | CUOLANT IN TOUT OUT OUT OUT OUT OUT OUT OUT OUT OU | |
1784
1794
1794
1798
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
11983
1198 | 194
194
199
199
199
199
199
199
199
199 | 9322.6205888989191804056872421070
33333333333333333333333333333333333 | 0522716521122231702058466784028
1892231702058466784028
333333333333333333333333333333333333 | 78413720443434523126552322788879993126552322788879993333333333333333333333333333 | 7442252054554464014454131196553
111988859798882101196553
3333333333333333333333333333333333 | 2748925542222331740857445306651
287911178888879779888657445306651
1117888887977988865744530 | | OIL PRESSURE FUEL SPILL BOOST (RF) BOOST (RR) HOUST (LF) BOOST (LR) AIR BOOST (LR) INLET VAC. (RF INLET VAC. (LR (L | PPSSS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 20.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 18.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | 19200000555800000000000000000000000000000 | 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 19000000000000000000000000000000000000 | 90000000000000000000000000000000000000 | 19000000000000000000000000000000000000 | TABLE C-20. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, BASELINE | DYNAMOMETER CONSTANT: 8000.
H/C RATIO: 1.82 | API | GRAVITY | OF DIES | BEL FUEL: | 33.9 AT 60 | F | |---|---|--|---|---|---|---| | RUN NUMBER
Nom. Water PCT. | 2.
0. | 8.
0. | 14.
0. | 40.
0. | 46
0 | | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 800.
591. | 800.
591. | 800.
591. | 800.
591. | 800.
591. | | | RAR. PRESS. IN-HG DRY BULB DEG F WEI BULK DEG F REL. HUMIDITY PCT CIRR. BHP HP CORR. BMEP PSI | 29.20
72.
64.
65.
89.8
24.9 | 29 29
74 64 58 89 5
24 8 | 29.04
74.
68.
74.
91.0
25.2 | 29.33
71.
58.
45.
88.4
24.5 | 29.13
79.
62.
38.
90.4
25.0 | | | FUEL FLOW LK/HR WATER FLOW CC/MIN CALC. VOL. % PCT. RSFC LB/BHP-HR A)R FLOW L LR/MIN AIR FLOW R LB/MIN | 43.10
0.0
0.0
4279
31.9
32.7 | 43.06
0.0
0.0
4813
31.9
32.6 | 42.87
0.0
0.0
4710
31.0
31.6 | 42.15
0.0
0.0
4768
31.0
31.1 | 42 43
0 0
0 0
4692
30 8 | | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP DEG F FUEL SUMPLY DEG F FUEL SUMPLY DEG F FUEL SUMPLY DEG F FUEL SUMMER AIR (RF)DEG F INTAKE AIR (LF)DEG F INTAKE AIR (LF)DEG F INTAKE AIR (LR)DEG F EXHAUST SAR DEG F EXHAUST SR DEG F EXHAUST SL | 066905999012334255583748861230
189905999012334255583748861230
33333333444 | 1896
1996
1997
1998
1998
1998
1998
1998
1998
1998 | 1887571391805553058350108636446
18875713991805553058350108636446
3 333333344344 | 188555865652400988771210403160625
88755865652400988771210403160625 | 175562380764400978722082026080044334433333444334443344433444334444344434443444344434444 | | | OIL PRESSURE PSI FUEL SPILL PSI RUOST (RF) PSI BOOST (RF) PSI BOOST (LF) PSI BOOST (LF) PSI AIR BOX PSI INLET VAC (RF)IN-H20 INLET VAC (LF)IN-H20 (LF)IN-H3 IN (RF) IN-H3 INLET INLET | 268 1010 122000000 5 | 279 00 00 0 0 0 9 9 7 6 0 0 6 8 8 8 0 7 20 3 0 0 0 1 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 22
00000000000000000000000000000000000 | 65 0 811122001111120030
20030 | 0.055.05.00.0880.087.77.0 7 | | TABLE C-21. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM, WITH WATER ADDITION | DYNAMOMETER CONSTANT: 2000.
H/C RATIO: 1.82 | API | GRAVITY | OF DIES | EL FUEL: | 33.9 AT | 60F | |---|---|--|---|---|--|-----| | KUN NUMBER
NOM. WATER PCT. |
41
5 | 42
10 | 43
15 | 44 .
20 : | 45
25 | | | ENGINE SPEED RPM
UBS. TORQUE LB-FT | 800
571 | 800.
591 | 800.
591. | 800.
591. | 800.
591. | | | BAR. PRESS. IN-HG
DRY BULB DEG F
WET BULK DEG F
REL. HUMIDITY PCT
CORR. BHP HP
CORR. BMEP PSI | 29.32
80.
60.
29.8
89.8
24.9 | 29.30
80.
61.
32.
90.0
24.9 | 29.26
80.
61.
32.
90.3
25.0 | 29 21
79
59
29
89 9
24 9 | 29 17
79
59
29
90 5
25 0 | | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR Alk FLOW L LR/MIN AIR FLOW R LB/MIN | 42.60
19.7
4.7
4742
31.1
30.0 | 42.83
40.0
9.4
.4760
30.9
30.0 | 43.28
66.4
14.6
.4791
30.6
30.6 | 44.19
90.6
18.6
4916
31.6
30.0 | 43 69
119 3
23 3
24829
30 6
29 9 | | | CUOLANT IN DEG F COBLANT OUT DEG F COBLANT OUT DEG F COBLANT OUT DEG F COBLANT OUT DEG F COBLANT CAR | 188733312654599098884096092618543
11108888899098884096092618543
133333334408122 | 1887432229967332053346668637541114
1887767888976733333334422
111088888776787541114 | 1887781788572210856253631199426
18877481788572210856253631199426 | 058970855249977332064320556979
1887910855249977332064320556979
11173320643320556979 | 78754038866822293368443294445179
11199888880688767660179
11113 33333344334 | | | OIL PRESSURE PSI FUEL SPILL PSI BUOST (RF) PSI BUOST (RR) PSI BUOST (LF) PSI BUOST (LF) PSI BUOST (LR) PSI INLET VAC. (RF)IN-H20 INLET VAC. (RR)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (RF)IN-H20 INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-HG TURB. IN. (RF) IN-HG TURB. IN. (LF) PSI FUEL SUPPLY WATER PRESS. PSI | 265
0 8112200089880 0
1030 0 | 60000000000000000000000000000000000000 | 67 0 8111220011110040
20 5 | 00500000000000000000000000000000000000 | 0 8-1-12200-1-1-1-3000
67 0 8-1-122000-1-1-1-30000
22 5 | | TABLE C-22. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, BASELINE | DYNAMOMETER CONSTANT: 8000.
H/C RATIO: 1.82 | AP I | GRAVITY | OF DIE | SEL FUEL: | 33.9 A | 7 60F | | | | |---|---|--|--|--|--|---|--|---|---| | RUN NUMBER
NOM. WATER PCT. | 3.
0. | 9 .
0 . | 15.
0.
 19.
0. | 25.
0. | 51.
0. | 57.
0. | 65.
0. | 7 <u>i</u>
0 . | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1000.
877. | 1000.
877. | 1000
877 | 1000.
877. | 1000.
877. | 1000.
877. | 1000.
877. | 1000
877 | 1000
H77 | | BAR PRESS. IN-HG
DRY BULB DEG F
WET BULB DEG F
REL HUMIDITY PCT
CORR BHP HP
CORR BHP PSI | 29.17
72.
64.
65.1
167.0
37.0 | 29.26
72.
64.
65.
165.9
36.7 | 28.99
74.
68.
74.
169.6
37.6 | 29.33
73.
66.
66.
166.4
36.9 | 29.25
73.
67.
73.
168.4
37.3 | 29.29
62.
55.
64.
162.9
36.1 | 29.15
68.
62.
166.2
36.8 | 29.07
62.
62.
76.
168.2
37.3 | 29.00
71.
64.
69.
167.2
37.0 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC: VDL. % PCT: BSFC LB/BHP-HR Alr FLOW L LB/MIN AIR FLOW R LB/MIN | 72.43
0.0
0.0
4336
40.7
41.8 | 72.17
0.0
0.0
4351
40.7
42.0 | 71.76
0.0
0.0
4230
39.8
40.8 | 72.25
0.0
0.0
4341
40.9
41.5 | 72.43
0.0
0.0
4301
39.9
40.2 | 71.91
0.0
0.0
.4416
41.4
41.6 | 73.17
0.0
0.0
4403
41.0
40.8 | 71.97
0.0
0.0
4278
39.6
40.2 | 71.32
0.0
0.0
4265
41.0
39.9 | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUPP DEG F FUEL SUPPLY DEG F FUEL COOLER (RF) DEG F INTAKE AIR (RR) DEG F INTAKE AIR (LF) (LR) (LR) | 9512290119123332246996725551584
78002808878000477756766977903
1120211
1 1 1 1 4 4 4 4 4 5 4 4 4 5 5 5 | 7809289888821100577864867097013
780928988821100577864867097013
112 1 | 96191789923117436099576444353778092178992311174360995764443537 | 7.800.160.884.1267.651.9666.164.250.653.1888.110.067.7866.44.250.888.110.114.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.653.144.7866.164.250.144. | 282018999660109792423160490718
1880211899888111109792423160490718
11111478474444554555 | 11890232882320804195670725477
789028077669999676855670725477
474444554555 | 1890286877004021552286232790987747642
189028088770099777856685229245
11990280887747642 | 1848791688138964639637453516398
1997797799996477563518846
199779778637453516398 | 42800809977889990952982128860443
111111
1289777799990952982128860443
147775522607443 | | OIL PRESSURE PSI FUEL SPILL PSI BOOST (RF) PSI BOOST (RR) PSI BUOST (LF) PSI BUOST (LF) PSI BUOST (LF) PSI BOOST (RR) PSI INLET VAC. (RF)IN-H20 INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (LF)IN-H20 INLET VAC. (RF)IN-H20 EXH. PRESS. (R)PSI IURB IN. (RF)IN-HG IURB IN. (LF)IN-HG | 34.00
11.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00 | 35711111211330001 B0 7 | 3477111141143000111110030
20030 | 35.6.6.12.0.14.114.30.0.37.7.7.7.0.5
20.30.0.30.0.30.0.30.0.30.0.30.0.30.0.3 | 0000000065990044440 2
35 | 95. | 35511000000550900111430 7 | 00000000000000000000000000000000000000 | 355100101111400553350030
101111400553350030 | TABLE C-23. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 5, 10, 15% WATER | DYNAMOMETER CONS
H/C RATIO: 1.82 | STANT : 2000. | API | GRAVITY | OF DIES | SEL FUEL: | 33.9 A | 106 1 | | | |
--|---|---|--|--|--|--|---|--|--|---| | RUN NUMBER
NOM, WATER PCT. | | 20 | 52.
5. | 66 .
5 | 21
10 | 53
10 | 67 .
10 . | 22
15 | 54
15 | 68 .
15 . | | ENGINE SPEED R
OBS. TORQUE L | RPM
.B-FT | 1000.
877. | 1000
877 | 1000
877 | 1000
822 | 1000 | 1000.
877. | 1000
877 | 1000
877 | 1000
877 | | | N-HG
DEG F
DEG F
OCT
HP
'SI | | 29.30
62.
55.
64.
163.2
36.2 | 29.08
67.
62.
76.
167.1
37.0 | 29.33
73.
66.
69.
168.6
37.3 | 29.28
68.
58.
55.
164.3 | 29.09
72.
66.
73.
167.9
37.2 | 29.31
72.
66.
73.
168.8
37.4 | 29.25
68.
58.
55.
164.5
36.4 | 29 .09
72
66
73
167 .9
37 .2 | | FUEL FLOW L WATER FLOW C CALC. VOL. % P RSFC L A)k FLOW L AIR FLOW R L | B/HR
C/MIN
CT
B/BHP-HR
B/MIN
B/MIN | 72.55
33.8
4.9
.4314
39.8
40.7 | 71 96
32.3
4.8
.4408
41.4
41.5 | 71.68
30.8
4.6
4290
40.4
40.2 | 73.11
66.4
9.2
.4337
39.5
40.1 | 72.06
69.7
9.7
4385
40.8
41.1 | 72.35
66.4
9.3
4309
40.5
40.3 | 73.34
111.0
14.4
.4345
39.5
40.1 | 72.52
109.55
14.4
.4409
40.9
41.3 | 72.37
111.0
14.6
1310
40.2
40.0 | | COOLANT IN DO COOLANT OUT DO UTL SUMP DO FUEL IN DEFUEL SUPPLY DEFUEL COOLER (RE) DINTAKE AIR (LE) DINTAKE AIR (LR) DINTAKE AIR (LR) DINTAKE AIR (LR) DHP AIR (RR) DHP AIR (RR) DHP AIR (LR) DEEXHAUST 2R DEEXHAUST 2R DEEXHAUST 4R DEEXHAUST 5R 5L DEEXHAUST 5L DEEXHAUST 5L DEEXHAUST 6L DEEXHAUST 5L DEEXHAUST 6L DEEXHAUST 5L DEEXHAUST 6L 6 | 50000000000000000000000000000000000000 | 1784989776666457887964927602619757 | 17897
17897
18897
17897
18897
18897
18897
18897
18897
18897
1889
1889 | 188019089558644407424373028310149
1887708877855864455554555 | 7808089999888800007567080828999888000075670800999998888844446005529926 | 180188504441133343880162589968659 | 74809706588450865670715335174809706588450865670715335174452297348 | 283987855666689356598606596548
11271898888000048888598606596548
11124844466596544901 | 1887
1887
1887
1887
1887
1887
1887
1884
1884 | 789877955884408196361223574988
11199677096361223574988
111944444455344653 | | OIL PRESSURF PO | | 35.0
36.0
1.0
2.0 | 9000000055781021136
45100101135 035566 | 3310000056000011020 0
451100010111440055550050 | 33
33
33
33
33
33
33
33
33
33
33
33
33 | 4551000101054891020130 0 | 0000000561000011000 0
5511001101144000333500050 | 90000000055080075670 7
37
37
200550055080075670 7 | 35 10000055990011130 7
35 100191133003355003 | 35 100 100 10 10 10 10 10 3 10 10 10 10 10 10 10 10 10 10 10 10 10 | TABLE C-24. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, 20, 25% WATER | DYNAHOMETER CONSTAN | IT: 2000. AP. | I GRAVITY | OF DIESE | L FUEL: | 33.9 AT | 60F | |--|--|---|---|--|---|--| | RUN NUMBER
NOM, WATER PCT. | 23
20 | 55.
20. | 69 .
20 . | 24
25 | 56.
25. | 70
25 | | ENGINE SPEED RPM
OBS. TORQUE LB-F | 1000 .
877 | 1000
877 | 1000
877 | 1000.
877. | 1000
877 | 1000.
877. | | BAR. PRESS. IN-H DRY BULB DEG WET BULK DEG REL. HUMIDITY PCT CORR. BHP HP CORR. BMEP PSI | 1G 29.29
F 72.
F 66.
73.
167.6 | 29 .21
60
59 .
165 .0
36 .5 | 29.09
72.
66.
167.9
37.2 | 29 27
72 .
66 .
167 . 7
37 . 1 | 29 . 18
69 .
69 .
165 . 2
36 . 6 | 29.04
72.
66.
73.
168.2
37.3 | | FUEL FLOW LB/H WATER FLOW CC/M CALC: VOL. % PCT. BSFC LB/B AIR FLOW L LB/M AIR FLOW R LB/M | R 73.83
IN 159.0
19.0
HP-HR .4405
IN 40.1
IN 40.3 | 73.68
155.9
17.1
.4466
48.8
41.5 | 73.02
155.92
194.9
40.7 | 73.91
208.0
23.9
.4407
39.9
40.3 | 73.77
209.0
23.9
.4467
41.0
41.2 | 73.53
211.0
24.2
4372
40.0
40.2 | | | 9516586770199449506333618576729
78091898880000388075555985890
11111488075555985890 | 628648776325553650372525559251
78991897777999944
7443433009251
1111
1897777799994
4444435555555555 | 74075677697697696103113092461
74075677697697696103113092461
74075677697697696103113092461 | 112
18988880743030115833935277
78091898880000388755833935277
1112 18988881000388755833935277 | 199777753360373739056605
199777753360373739056605 | 630647676095629016513526446103
78091199888700095876545446007612
1112 1 4 44444554455 | | UIL PRESSURE PSI
FUEL SPILL PSI
BOOST (RR) PSI
BOOST (LR) PSI
BUOST (LR) PSI
BUOST (LR) PSI
INLET VAC (RF) IN-H
INLET VAC (RF) IN-H
INLET VAC (LF) IN-H
EXH PRESS (L) PSI
TURB IN (RF) IN-H
TURB IN (RF) IN-H
TURB IN (RF) IN-H
TURB IN (LR) | 00000000000000000000000000000000000000 | 35 10010414500555500040 | 35 10 00 00 00 00 00 00 00 00 00 00 00 00 | 58 12010141330003335005 | 356-10-0-0-0-5-69-9-0-1-1-20-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2- | 35
461000000000000000000000000000000000000 | TABLE C-25. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 2.4 DEGREES | DYNAMOMETER CONSTANT: 2000.
H/C RATIO: 1.82 | API | GRAV1TY | OF DIES | SEL FUEL: | 33.9 A | 1 60F | | |--|---|--|--|--|---|---|---| | RUN NUMBER
NUM. WATER PCT. | 72 | 78
0 | 73 .
5 . | 74
10 | 75
15 | 76
20. | 27
25 | | ENGINE SPEED RPM
UBS: TURQUE LB-FT | 1000
827 | 1000
877 | 1000
877 | 1000
877 | 1000
877 | 1000 | 1600
877 | | BAR PRESS IN-HG DRY BULB DEG F WET BULK DEG F REL HUMIDITY PCT CURR BHP HP CORR BMEP PSI | 29.23
74.
62.
51.
166.2
36.8 | 29 21
82 60
26 1
166 8
36 9 | 29.25
74.
62.
166.5
36.9 | 29 25
80
61
32
166 4
36 9 | 29 24
80 61
32
166 7
36 9 | 29 32
89 61
61 32 61
166 4
36 9 | 29 23
86
61.
32
166 5
36.9 | | FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LE/BHP-HR AJK FLOW L LE/HIN AIR FLOW R LE/MIN | 72 29
0 0
0 0
4349
40 8 | 72.23
0.0
0.0
4331
40.1
40.7 | 71.72
32.3
4.8
4307
40.7 | 72.17
68.1
9.5
4337
40.4
40.5 | 72.32
109.5
14.4
.43.3
40.3
40.7 | 72.64
157.4
19.4
4365
40.3 | 73.22
208.0
24.0
4397
40.4
40.5 | | COOLANT IN DEGGEFF FOR THE PROPERTY OF PRO | 118998877087669867190868610053318418
1899887708766986778876633135667190868610053318418 | 840021833562387772982806382793
1780021833562387772982806382793
1110888884444663313555555 | 748990900109921778031039803256
7899179998800007778557552303355
11114 444455555555 | 7380909092333312533340828204224587
1189099923333125333408282042245387
1111144
873445542245387 | 76387607324441264651113558690000
118991999881126465111355869000
11114 44445574555 | 9507.60.65.45.623.86.842.22.27.57.93.52.44
78091.999.88811.00.68875.45.45.85.3812.34
1111.148875.45.45.53.45.55 | 110051540655443444445534555
11005133337357245
111051345454454555555 | | OIL PRESSURE PSI FUEL SP(LL PSI BUOST (RF) PSI BUOST (RR) PSI BUOST (LF) IN-H20 INLET VAC. (RF) IN-H20 INLET VAC. (LF) IN-H20 INLET VAC. (LF) IN-H20 INLET VAC. (LF) IN-H20 INLET VAC. (LF) IN-H20 INLET VAC. (LPSI EXH. PRESS. (L)PSI EXH. PRESS. (L)PSI TURB. IN. (RF) IN-HG TURB. IN. (LF) IN-HG TURB. IN. (LF) IN-HG TURB. IN. (LR) IN-HG FUEL PRESS. PSI EMULSION PRESS PSI EMULSION PRESS PSI EMULSION PRESS PSI HATER PRESS. PSI | 00000045500000111200
05511101211144000375500000 | 000000056100011120
54111010111440033350030
20030 | 35
35
35
36
37
37
37
37
37
37
37
37
37
37
37
37
37 | 35411010111010 S
3541101011111010 S
3541101011111010 S | 35 1 1 0 1 2 1 1 4 4 0 0 3 3 3 5 0 0 3 0 5 0 5 0 5 0 5 0 5 0 | 334110121114400333330030 | 451101611179400879790000
35 | TABLE C-26. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING RETARDED 4.1 DEGREES | DYNAHDMETER CO
H/C RATIO: 1.8 | NSTANT : 2000. | AP1 | GRAVITY | OF DIES | FL FUEL: | 33.9 AT | 60F | | |--|--|--|---|--|--|--|---|--| | KUN NUMBER
NOM WATER PCT | | 79 .
0 . | 8 5 .
0 . | 80 .
5. | 81
10 | 82.
15. | 83
20 | 84
25 | | ENGINE SPEED
OBS. TURQUE | RPM
LB-FT | 1000
877 | HAR PRESS DRY BULB WET BULB REL HUMIDITY CURR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.04
80.
70.
61.
170.3 | 28.93
94.
70.
30.
172.6
38.2 | 29.06
80.
70.
61.
170.6
37.8 | 29.06
83.
71.
56.
170.6
37.8 | 29.03
83.
71
56
171 2
37.9 | 29.00
84.
71.
53.
172.6
38.2 | 28.96
92.
71.
35.
172.8
38.3 | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW L
AIR FLOW R |
LB/HR
CC/MIN
PCT-
LB/BHP-HR
LB/MIN
LB/MIN | 72.58
0.0
0.0
4263
39.3
40.4 | 72.52
0.0
0.0
4201
39.6
39.5 | 72.09
33.8
4.9
4226
39.1
39.8 | 72 93
69 7
96
4275
39 1
39 8 | 73.51
108.0
14.0
4293
40.7
39.7 | 73.82
154.4
18.8
4276
38.0
39.5 | 74.57
211.7
23.9
.4315
39.5 | | COOLANT IN COOLANT OUT | 00000000000000000000000000000000000000 | 847435399559996324027463492224
111102908888100698807684634922224
11111111114 5448478 | 78786000000141496502796245882
78978600000141496502796245882
58479 | 1848547522662208236483017243279
1848547522662208236483017243279
1111114
44444555555 | 749759655884519386037061695346
119029099881111088899637061695356
1111111 1 44475555555 | 840741655333464028441533032878
1800201009999111189888441533032878
1111114 444455535555 | 7495234005689063542241400336879
111000999112179986565229134
1111149988455229134 | 74041441167009794694340208920374041441167009794694340208920397945552189203 | | UIL PRESSURE FUEL SPILL MOUST (RF) BOOST (RR) BUOST (LR) AIK BOX INLET VAC (RF INLET VAC (LF INLET VAC (LF INLET VAC (LR LXM. PRESS (LL TURB IN. (RF) TURB IN. (RF) TURB IN. (LF) FUEL PRESS EMULSION PLES WATER PRESS | PPROSENT COO
99999999999999999999999999999999999 | 5551100005551100111020 0
5551100121114400535530050 | 355110101114400333336030
2030 | 0000000005500000110000 0 | 0000000056010011020 2
551100101114400555536030 | 000000055210011020 5
351100121114400533336030 | 555110000056210000010
101011440005753360530
20050 | 00000000056210000010 7 | TABLE C-27. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING ADVANCED 2.8 DEGREES | DYNAMOMETER CO
H/C RATIO: 1.8 | NSTANT: 2000. | API | GRAVITY | OF DIES | EL FUEL: | 33.9 AT | 40 <i>F</i> | | |--|--|--|---|--|--|---|--|---| | RUN NUMBER | | 93. | 99. | 94. | 95. | 96 | 97 . | 98 | | NOM. WATER PCT | | 0. | 0. | 5. | 10. | 15 | 20 . | 25 | | ENGINE SPEED | RPM | 1000. | 1000. | 1000. | 1000. | 1000 | 1000 | 1000 | | OBS. TORQUE | LB-FT | 877. | 877. | 877. | 877. | 877 | 877 | | | BAR PRESS | IN-HG | 29.24 | 29.04 | 29.22 | 29.20 | 29.16 | 29 12 | 29.09 | | DRY BULB | DEG F | 72. | 85. | 72. | 80. | 80. | 84 | 84 | | WET BULK | DEG F | 60. | 65. | 60. | 61. | 61. | 64 | 64 | | REL HUMIDITY | PCT | 49. | 33. | 49. | 32. | 32. | 33 | 33 | | CURR BHP | HP | 165.1 | 169.8 | 166.0 | 166.5 | 167.4 | 168 7 | 168 9 | | CURR BMEP | PSI | 36.6 | 37.6 | 36.8 | 36.9 | 37.1 | 37 4 | 37.4 | | FUEL FLOW | LB/HR | 72.32 | 71.68 | 72.35 | 72.91 | 73.59 | 74 10 | 74.60 | | WATER FLOW | CC/MIN | 0.0 | 0.0 | 30.8 | 68.1 | 111.0 | 157 4 | 208.0 | | CALC: VOL: % | PCT | 0.0 | 0.0 | 4.5 | 9.4 | 14.3 | 19 1 | 23.7 | | BSFC | LB/BHP-HR | 4382 | .4222 | 4357 | 4380 | 4397 | 4392 | .4416 | | AIK FLOW L | LB/MIN | 41.0 | 39.0 | 40.9 | 40.5 | 40.0 | 39 4 | 39.4 | | AIR FLOW R | LB/MIN | 40.7 | 39.2 | 40.3 | 40.5 | 39.8 | 39 6 | 39.8 | | COOLANT IN COOLANT OUT OIL SUMP FUEL SUPPLY FUEL RETURN FUEL SUPPLY FUEL COOLER INTAKE AIR (RF INTAKE AIR (LF I | 00000000000000000000000000000000000000 | 738684654554476122301386554611
18988770099778651386554611
4445554611 | 1899445355124442608522615747357
1899445355124442608522615747357
1111114 988522615747357
4445545555 | 748117987006721966261173345456
11190117987006721966261173345456
111114
4444554555 | ## 112101000099229943249612760902038 | 852202122450076372456235540414
780029099881100688754544118124
111114 4444445555 | 7520830008901109686366323071656
1121011909089011058887543071656
111114844444455855 | #52984922002221196757338621185
7809199999911111588654544007008
111114 44444554555 | | OIL PRESSURE FUEL SPILL BOOST (RF) BOOST (RR) BOOST (LR) AIR BOX INLET VAC (RF INLET VAC (LR V | PSSI 1 2200
PSSI 1 2200
PSSI 1 + H200
PSSI PSSI PS | 33 100121114300313300 2 | 33 11001211144003333300000
20030 | 44 100000055000010010 4
44 1000121114400555500000000000000000000000 | 44100000000000000000000000000000000000 | 44 100000056900010010 5
35 1000121154005555N0050 | 44100010111440000000000000000000000000 | 4441001040144400333330030
35 | TABLE C-28. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM, FUEL INJECTION TIMING ADVANCED 5.5 DEGREES | DYNAMOMETER CO
H/C RATIO: 1.8 | NSTANT : 2000 . | API | GRAVITY | OF DIES | EL FUEL: | 33.9 AT | 60F | |
--|--|---|---|---|---|---|---|--| | RUN NUMBER
NOM, WATER PCT | | 100.
0. | 106.
0. | 101.
5. | 102.
10. | 103 | 104.
20. | 105
25 | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 1000
877 | 1000
877 | 1000.
877. | 1000
877 | 1000.
877. | 1000.
877. | 1000 | | BAR. PRESS. DRY BULB WET BULB REL. HUMIDITY CORR. BHP CORR. BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 28.98
75.
69.
74.
169.4
37.5 | 28.95
82.
70.
55.
171.5
38.0 | 28.99
75.
67.
74.
170.2
37.7 | 29.00
75.
78.
169.9
37.6 | 29.00
82.
70.
55.
170.8
37.8 | 28.99
82.
70.
55.
170.6
37.8 | 28.97
82.
70.
55.
171.0 | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 73.41
0.0
0.0
.4333
40.0
40.1 | 72.85
0.0
0.0
4247
38.7
39.2 | 73.77
32.3
4.6
4334
39.5
39.9 | 74.04
68.1
9.3
4357
39.7
40.2 | 75.47
112.5
14.2
.4419
40.9
39.8 | 76.11
160.6
19.0
4460
39.2 | 76.50
215.5
23.8
4474
39.0
40.1 | | COOLANT IN COOLANT OUT OIL SUMP FUEL SUMP FUEL RETPLY FUEL COOLER INTAKE AIR (LR INTAKE AIR (LR INTAKE AIR (LR INTAKE AIR (LR INTAKE AIR INT | | 740460333981319988659195288367
11211 1 4 445545235 | 18024564013221121121114888440183306987 | 1782453455214542692707041014120
12102112119188881100426927070441014120
112104534552145355 | 18021321345773487230672667770863
190221345773487230672667770863
1121024
1111148
4455441170863 | ## 120 122 28 6 6 4 2 4 6 3 3 2 8 6 1 0 1 2 2 1 1 1 1 1 1 6 8 8 7 6 5 5 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 | 853304399998900385553756863820
180029088888900385553756863820
111148887653756863820 | 8542952122302331961461685372977800190797971111148887655449574757 | | UIL PRESSURE FUEL SPILL BUOST (RF) BUOST (RF) BUOST (LF) BUOST (LF) BUOST (LF) AIK BOX AC (RF INLET VAC (RF) | PPS1112200
PPS1114220
PPS1114220
PPS114220
PPS1214220
PPS1214231
PPS1214231
PPS121431
PPS121431
PPS121431
PPS131 | 33 10000055100010110 0
35 10001015110 0
35 1000101110 0 | 34.00000550000010
121114.000000000000000000000000000000000 | 34 1000121114 40033535000
20000000000000000000000000000 | 34 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 1 | 34 10001041144003333340 2
20330 5 | 33 10001011111440003333340330 4 | 33
33
33
34
35
35
35
35
35
35
35
35
35
35
35
35
35 | TABLE C-29. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, BASELINE | DYNAMOMETER CO
H/C RATIO: 1.8 | NSTANT: 2000 | L AP | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 AT | 60F | |--|---|--|---|--|--|--|-----| | RUN NUMBER
NOM, WATER PCT | | 4 : 0 : | 10.
0. | 16. | 26 .
0 . | 32.
0. | | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 1200
1229 | 1200
1229 | 1200.
1229. | 1200
1229 | 1200
1229 | | | BAR PRESS. DRY BULB WET BULK REL HUMIDITY CUKR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.16
75.
65.
281.3
51.9 | 29.25
72.
64.
65.
280.1 | 28.96
75.
70
78.
286.1
52.8 | 29.31
79.
61.
34.
277.9
51.3 | 29.18
72.
62.
52.
282.4
52.1 | | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AJR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 115.57
0.0
0.0
4108
52.1
51.8 | 115.85
0.0
0.0
.4136
50.5
52.9 | 115.13
0.0
0.0
4023
49.1
50.2 | 115.76
0.0
0.0
4166
50.8
52.3 | 115 11
0 0
0 0
4077
49 4
52 2 | | | COOLANT IN COOLANT OUT COOLANT OUT COOLANT OUT COOLANT OUT COOLANT FUEL SUPPLY FUEL IR FUEL SUPPLY FUEL SUPPLY FUEL SUPPLY FUEL SUPPLY FUEL SUPPLY FUEL AIR (RF INTAKE AIR (LF HP AIR (LF) EXHAUST 1R EXHAUST 2R EXHAUST 3R EXHAUST 5R EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L EXHAUST 5L | DEGG FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 0862551563423227876778881445880
112111577866778881445880
11211157786778881445880 | 976133011007909586838353081869
11211115779780872293349
1121115779780872293349 | 197243144
188012831444
18888841115
1888881112288
112248805837701115808 | 188
188
188
198
198
198
198
198
198
198 | 75492100955555555555555665666112 1 1 11115 655555665666 | | | OIL PRESSURE FUEL SPILL MUDST (RF) BOOST (RR) BOUST (LF) AJR BOX INLET VAC. (RF INLET VAC. (RF INLET VAC. (LR I |
PS1
PS1
PS1
PS1
PS1
PS1
PS1
PS1
PS1
VIN-H20
VIN-H20
VPS1
VPS1
VPS1
VPS1
VPS1
VPS1
VPS1
VPS1 | 2601110110101015500000000000000000000000 | 00000000077600044440 1
350011000077600044440 1
20000 | 001005057650035990 5
25501106005500550035990 5
44 | 45211272255002222050
40000000000000000000000000 | 44
44
44
10
10
10
10
10
10
10
10
10
10
10
10
10 | | TABLE C-30. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, WITH WATER ADDITION | DYNAMUMETER CONSTANT: 80 00
H/C RATIO: 1.82 | D. AP | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 AT | 60F | |--|---|---|---|--|--|-----| | NUN NUMBER
NOM. WATER PCT. | 27.
S. | 28
10 | 29 .
15 . | 30.
20. | 31
25 | | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1200
1229 | 1200.
1229. | 1200
1229 | 1200
1229 | 1200
1229 | | | BAR PRESS. IN-HG DRY BULB DEG F WHT BULB DEG F REL HUMIDITY PCT COKR BHP HP CURR BMEP PSI | 29.31
79.
61.
34.
280.0
51.7 | 29 . 29
72 .
62 .
57 .
280 . 5
51 . 8 | 29 . 25
72 .
62 .
57
280 . 9
51 . 9 | 29,20
75,
64,
55,
283,2
52,3 | 29.18
72.
62.
282.4
52.1 | | | FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % FCT BSFC LE/BHP-HR AIR FLOW L LE/MIN AIR FLOW R LE/MIN | 116.26
49.8
4152
4152
50.7 | 115.70
114.0
9.9
.4124
50.9
51.8 | 116.43
175.1
14.3
.4144
50.8
51.6 | 116.22
215.5
17.1
.4104
51.0
51.1 | 116.43
366.4
25.9
.1123
49.4
51.2 | | | CUOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP FUEL SUMP FUEL RETURN DEG F FUEL RETURN DEG F FUEL RETURN DEG F FUEL COOLER (RR)DEG F INTAKE AIR (RR)DEG F INTAKE AIR (LR)DEG F INTAKE AIR (LR) DEG F INTAKE AIR (LR) DEG F HP AIR (RR) HP AIR (LR) HP AIR (LF) HP AIR (LF) HP AIR (LF) HP AIR (LF) EXHAUST 1R DEG F EXHAUST 1R DEG F EXHAUST 1R DEG F EXHAUST 1L DEG F EXHAUST 5R DEG F EXHAUST 1L 5L DEG F EXHAUST 5L DEG F | 966234232448921502950146698761
7800280998822224789779988028224
112111 1 5555566566666666666666666666666 | 966234487442321600732450164329
1888888221600732450164329
188788888779164329 | 97/632247/643232911405487047114792
1121121111115 5555556566666 | 9261925888434205444714137494799
1120111818888434205444714137494799
555555556565656 | 8565520009563422942164470947189780918098882222188464655705080112 1 1 111115 5555565656 | | | OIL PRESSURE PSI
FUEL SPILL PSI
BUOST (RF) PSI
BUOST (RR) PSI
BUOST (LF) PSI
BUOST (LF) PSI
AJR BOX (RF) IN-H20
INLET VAC (RF) IN-H20
INLET VAC (LF) IN-H20
INLET VAC (LF) IN-H20
INLET VAC (LR) IN-H6
TURB IN (RR) IN-H6
TURB IN (LR) IN-H6
TURB IN (LR) IN-H6
TURB IN (LR) IN-H6
TURB IN (LR) IN-H6
FUEL PRESS PSI
EMULSION PRESS PSI
EMULSION PRESS PSI
EMULSION PRESS PSI
EMULSION PRESS PSI | 99991110702155000000000000000000000000000000 | 000500067660035550 4
3501112702550035550030
44 | 0005050677500333330 5
4421127225500333330030
20
5 | 000505050567500333330 0
4442112722255003333330 0
2040 | 00000000000000000000000000000000000000 | | TABLE C-31. ENGINE TEST RESULTS. DETROIT DIESEL ENGINE, 1400 RPM, BASELINE | DYNAMUMETER CONSTANT: 2006
H/C RATIO: 1.82 |). AP] | GRAVIT | Y OF DIE | SEL FUEL | - 33.9 A | 1 60F | | |--|--|--|--|---|--|---|--| | RUN NUMBER
NOM, WATER PCT. | 5.
0. | 11. | 17 | 33.
0. | 39.
0 | 58
0. | 5 4
0 | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1400.
1654. | 1400
1654 | 1400.
1654. | 1400.
1654. | 1400
1654 | 1400
1654 | 1400
1654 | | BAR PRESS IN-HG DRY BULB DEG F WHT BULB DEG F REL HUMIDITY PCT CORR BHP HP CORR BMEP PSI | 29.30
67.
62.
76.
435.0
68.8 | 29.12
74.
67.
70.
446.5
70.6 | 29.17
75.
64.
55.
444.1
70.2 | 29.17
75.
62.
48.
442.5
70.0 | 29 . 23
21 .
59 .
437 . 5
69 . 2 | 29 22
65
59
70
431 1
68 2 | 29.15
68
64
81
438 6
69 4 | | HUEL FLOW LEYHR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LEYBHP-HR AIR FLOW L LEYMIN AIR FLOW R LEYMIN | 177.76
0.0
0.0
4087
66.3
68.6 | 177 08
0 0
0 0
3965
64 8
67 4 | 177 47
0 0
0 0
3997
66 0
68 4 | 176 47
0 0
0 0
3988
66 3
69 0 | 177 44
0 0
0 0
4056
66 0
69 7 | 176 38
0 0
0 0
4091
66 8
69 5 | 176 47
0 0
0 0
4023
64.7
68.7 | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMP DEG F FUEL SUPPLY DEG F FUEL COOLER DEG F INTAKE AIR (RF)DEG F INTAKE AIR (LF)DEG F ENHALE (LF)DEG F HP AIR (RF) HP AIR (RF) HP AIR (RF) HP AIR (LF)DEG F EXHAUST 1R DEG F EXHAUST 2R DEG F EXHAUST 3R 5R DEG F EXHAUST 3L DEG F EXHAUST 5L DEG F | 871461567440117799040862874280
871461567440117799040862874280
667766677677 | 991572443666739452682800681095
11211
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 769560600993473352433140012238
1121181998855553789920983504548
11116 6677683504548 | 11211281300554443918175112130088029
112118130055444391817511116
867767777 | 11210464075772273640291174229
1121028075772273687767777
11210464075772273667767777 | 978025921873249372058934930662
97880259218732493720589777777777777777777777777777777777777 | 11211279732533294010503178792197
11211279797755336779911787777777777777777777777777777777 | | OIL PRESSURE PSI FUEL SPILL PSI HUOST (RF) PSI BUOST (RR) PSI HUUST (LF) PSI BUUST (LF) PSI BUUST (LR) PSI INLET VAC. (RF)IN-H20 INLET VAC. (RF)IN-H20 INLET VAC. (LF)IN-H20 (LP)IN-HG INLET VAC. (LP)IN-HG INLET INLET IN-HG INLET | 0004575464400 NUNNOSSO 5 | 18433484478 NANGE 30 | 17453484488 6676030
2030 | 0000050455209887750 5
074334044880099999030 | 5443340448908079980 9
544334044890807998020 | 000005000133331154446 5
94433424488 99990050 | 54433434488 99900040
1040 | TABLE C-32. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, WITH WATER ADDITION | DYNAMOMETER CONSTANT: 2000
H/C RATIO: 1.82 | . AP | I GRAVIT | Y OF DIE | SEL FUEL | .: 33.9 A | T 60F | | | |
--|--|--|--|---|--|---|--|---|---| | RUN NUMBER
NOM. WATER PCT. | 34.
5. | 59
5 | 35.
10. | 60.
10. | 36.
15. | 61 .
15 . | 37 .
20 . | 62 .
20 . | 38 .
25 . | | ENGINE SPEED RPH
OBS. TORQUE LB-FT | 1400
1654 | 1400.
1654. | 1400
1654 | 1400.
1654. | 1400.
1654. | 1408.
1654. | 1400.
1654. | 1400.
1654. | 1400.
1654. | | BAR PRESS IN-HG DRY BULB DEG F WET BULB DEG F REL HUMIDITY PCT CURR BHP HP CORR BHEP PSI | 29.18
75.
62.
48.
442.9
70.1 | 29, 23
65,
60,
75,
433, 2
68, 5 | 29.19
75.
62.
48.
442.2
70.0 | 29.23
67.
62.
76.
434.3
68.7 | 29.19
75.
61.
44.2
69.8 | 29.21
68.
62.
72.
435.6
68.9 | 29.18
76.
63.
48.
441.0
69.8 | 29.19
68.
62.
72.
437.1
69.1 | 29.18
72.
59.
46.
435.2
68.8 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC. VOL. % PCT BSFC LB/BHP-HR AIR FLOW L LB/MIN AIR FLOW R LB/MIN | 175.30
82.8
5.0
.3958
65.2
69.0 | 177.80
81.2
4.8
4105
66.1
69.9 | 176.64
173.4
9.6
.3995
64.5
68.7 | 175.95
170.1
9.7
.4051
65.8
69.5 | 176.73
292.1
15.5
4006
64.8
68.9 | 176.82
270.5
14.5
4059
65.4
69.3 | 176.38
418.9
20.9
4000
65.1
69.2 | 176.13
380.5
19.4
.4030
64.9
68.5 | 177 25
501 7
23 9
4073
65 1
70 0 | | COOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUPP FUEL RETURN DEG F FUEL COOLER INTAKE AIR (RR)DEG F INTAKE AIR (LR)DEG DEG F EXHAUST 1R DEG F EXHAUST 2R DEG F EXHAUST 5R 5L DEG F EXHAUST 5L DEG F EXHAUST 6L DEG F | 1184156333095555530782901201290660
1184156333095555530782901201290660
11553788901201290660
11553788901201290660 | 18279087322004361775695187148306677777777777777777777777777777777777 | 18604533324445507721322128979741
1816281998855507221322128979741
11554298882212897949741 | 1187977777778187878787878787878787878787 | 1180022309
1180022309
1180022309
11257453025651946635
11141698977779376635 | 43898543254830888992225332697
18898543254830888992225332697
144830888992225332697 | 1401002809999236263822216989999231144057822221698999992311440578222216989999923114405782222169899999231144057822221698999992311440578222221698999999999999999999999999999999 | 175489
18099
18399
18399
1845
174439
1899
1899
1899
1899
1899
1899
1899
18 | 7-6-1-98-88-7-7-8-1-9-8-7-5-5-5-5-5-5-5-7-8-1-1-9-8-7-5-5-5-5-5-5-5-5-5-5-7-7-7-7-1-1-2-7-1-1-1-1-1-1-1-1-1-1-1-1 | | OIL PRESSURE PSI
FUEL SPILL PSI
BUOST (RF) PSI
BUOST (RK) PSI
BUOST (LF) PSI
BUOST (LF) PSI
BUOST (LF) PSI
BUOST (LF) PSI
BUOST (LF) PSI
BUOST (LF) PSI
INLET VAC. (RF) IN-H20
INLET VAC. (LF) IN-H3
INLET INLET | 000000004455800000000005
0447334044880000000000000000000000000000 | 00000000044414455450 3
54443434458 955500050
20 51 | 000005035420087760 5
0544340448800359990030
20 5 | 5155444343444888 977790030
20030 | 00000050354200087550 5
05444340448800999990050
20050 | 0005000024311154440 2
54443434488 99990030 | 0000000046300076550 5 | 000050054001145N300 N | 000005045100076050 5
0544340448800999990030
10 5 | TABLE C-33. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1400 RPM, FUEL INJECTION TIMING RETARDED 4.1 DEGREES | DYNAHOMETER CO | NSTANT: 2000 | AP: | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 A | T 60F | | |--|---|--
---|---|--|--|---|--| | RUN NUMBER | | 86. | 92 . | 87 . | 88. | 89. | 90 | 91 | | NOM. WATER PCT | | 0. | 0 . | 5. | 10. | 15. | 20 | 25 | | ENGINE SPEED | RPM | 1400. | 1400. | 1400. | 1400. | 1400. | 1480. | 1400. | | OBS. TORQUE | LB-FT | 1654. | 1654. | 1654. | 1654. | 1654. | 1654. | 1654. | | BAR PRESS. DRY BULB WEI BULK REL HUMIDITY CUKR BHP CORR BMEP | IN-HG | 29.49 | 29.43 | 29.50 | 29.50 | 29 . 48 | 29.46 | 29,45 | | | DEG F | 74. | 80. | 74 | 74. | 77 . | 77. | 80, | | | DEG F | 52. | 54. | 52. | 52. | 64 . | 64. | 54, | | | PCT | 18. | 13. | 18. | 18. | 49 . | 49. | 13, | | | HP | 430.8 | 436.0 | 431.8 | 432.4 | 437 . 8 | 439.3 | 433,5 | | | PSI | 68.2 | 69.0 | 68.3 | 68.4 | 69 . 3 | 69.5 | 68,6 | | FUEL FLOW | LB/HK | 180 .81 | 181.54 | 180 .36 | 179.78 | 178.66 | 178.31 | 178 .44 | | WATER FLOW | CC/MIN | 0 .0 | 0.0 | 82 .8 | 171.8 | 277.7 | 387.5 | 522 .4 | | CALC: VOL: % | PCT | 0 .0 | 0.0 | 4 .9 | 9.6 | 14.7 | 19.4 | 24 .6 | | BSFC | LB/BHP-HR | .4197 | 4164 | .4177 | 4153 | 4081 | 4059 | .4117 | | AJR FLOW L | LB/MIN | 68 .6 | 66.7 | 68 .1 | 67.9 | 67.2 | 66.7 | 66 .7 | | AIR FLOW R | LB/MIN | 70 .9 | 70.3 | 70 .8 | 70.4 | 69.6 | 69.7 | 70 .0 | | COOLANT IN COOLANT OUT COOLANT OUT COOLANT OUT COOLANT OUT COOLANT OUT COOLANT OUT COOLANT COO | | 1180
1181
1200
1121
1120
1121
1120
1121
1121 |
1180734
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
11201124
1120 | 112011248898888855577776765571111111111111111111111 | 1187
1187
1187
1187
1188
1188
1188
1188 | 112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
1120000
112000
112000
112000
112000
112000
112000
112000
112000
1120000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000
112000 | 1120112060144556622756894649294
6483060118099856622756894649294
667127777777777777777777777777777777777 | 11675555667616090645695736635
112 1189798855544090645695736635
1112 1189798855544090645695736635 | | OIL PRESSURE FUEL SPILL HOUST (RF) BOUST (RF) HOUST (LF) BOUST (LF) BOUST (LF) AIR BOX INLET VAC (RF INLET VAC (LF INLET VACS (RF INLET VACS (RF INLET VACS (LR EXH PRESS (RF) IURB IN (RF) IURB IN (RF) IURB IN (LF) FUEL PRESS EMULSION PRESS FUEL SUPPLY WATER PRESS | PSSSI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 517.4333464488
1099960030 | 5444444644BB 99992030 | 16443464488 99996030
54235 | 5154443464488 9999603
510443464488 9999603 | 545443464488 99996030
515443464488 99996030
51030 | 54544346448B 99996030
600550065331165440 0 | 00000000000000000000000000000000000000 | TABLE C-34. ENGINE TEST RESULTS, DETROIT DIESEL ENGINE, 1600 RPM, BASELINE | DYNAHOMETER CONSTANT: 2000
H/C RATIO: 1.82 | . AP | I GRAVIT | Y OF DIESE | L FUEL: | 33.9 AT | 60F | |--|--|--|--|---------|---------|-----| | RUN NUMBER
NOM, WATER PCT. | 6 .
0 . | 12.
0. | 18.
0. | | | | | ENGINE SPEED RPM
OBS. FURQUE LB-FT | 1600
2143 | 1600
2143 | 1600
2143 | | | | | BAR. PRESS. IN-HG DRY BULB DEG F WEI BULB DEG F REL. HUMIDITY PCT COKR. BHP HP CORR. BMEP PSI | 29.31
75.
65.
648.1
89.7 | 29.11
78.
69.
64.
660.1
91.4 | 29.17
75.
64.
55.
660.7
91.5 | | | | | FUEL FLOW LE/HR WATER FLOW CC/MIN CALC. VOL. % PCT. BSFC LB/BHP-HR AIR FLOW L LE/MIN AIR FLOW R LB/MIN | 259.27
0.0
0.0
4001
85.7
93.1 | 260.12
0.0
0.0
3940
82.0
91.5 | 260 37
0 0
0 0
3941
84 4
91 9 | | | | | COOLANT IN DEG F F COOLANT OUT | 822 :
817 :
829 : | 841
835
844 | 835.
837.
848. | | | | | JIL PRESSURE PSI FUEL SPILL PSI BOOST (RF) PSI BOOST (RR) PSI BOOST (LR) PSI BOOST (LR) PSI AIK BOX PSI INLET VAC. (RF) IN-H20 INLET VAC. (LF) INLET INLH20 INLET INLET INLH20 | 50787817822 22420030
10030 | 557777827832 44440030
2030 |
60777828723 44440030
55777828723 44440030 | | | | TABLE C-35. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, $600\ \text{RPM}$ | DYNAHOMETER CON | STANT : 3000 . | API | GRAVITY | OF DIES | L FUEL: | 33.9 | AT | 60F | |--|---|--|--|---------|---------|------|----|-----| | RUN NUMBER
NOM. WATER PCT. | | 142. | 143 | | | | | | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 600
385 | 600
385 | | | | | | | BAR PRESS
DRY BULB
WET BULB
REL. HUMIDITY
CURR BHP
CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.13
88.
74.
52.
45.0
16.6 | 29.12
90.
73.
44.
45.3
16.7 | | | | | | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT.
LB/BHP-HR
LB/MIN
LB/MIN | 24.10
0.0
0.0
.5351
22.9
23.3 | 24.32
10.3
4.5
5374
23.0
23.2 | | | | | | | SIDICH. F/A
HEAS. F/A
CALC. F/A
Z DIFF. | PCT | .0689
.0087
.0072
-17.48 | 0689
0088
0072
-18 37 | | | | | | | COOLANT IN COOLANT OUT COOLANT OUT OUT COOLANT OUT COIL SUMP FUEL SUMP FUEL SUMPLY FUEL COOLER (RE) INTAKE AIR (LE) LEXHAUST 3R EXHAUST 3R EXHAUST 3R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5L | | 149719519216739388953119504248
1889719519216739388953119504248
111 11 1 3 332322732334 | 3083601926590632038210422688204
879063203926210422688204
111111111111111111111111111111111111 | | | | | | | OIL PRESSURE FUEL SPILL BOOST (RF) BOOST (LF) (LF | PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI
PPSSI | 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 18 0 3 3 0 0 3 5 4 4 9 8 0 0 8 6 7 9 8 0 0 8 6 7 9 8 0 0 8 6 7 9 8 0 0 8 6 7 9 8 0 0 8 6 7 9 8 0 0 0 8 6 7 9 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | | | | | HYDROCARBONS CARBON MONOXIDE NITRIC DXIDE NITROGEN OXIDES CARBON DIOXIDE UXYGEN PARTICULATE | | 421
302
361
191
191 | 491
186
354
186
186
5 | | | | | | | HC MASS
CO MASS
NOX MASS
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 310
260
951
7 06
5 91
21 62 | 366
276
913
9 31
6 27
20 75 | | | | | | TABLE C-36. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 800 RPM | DYNAMUMETER CO | NSTANT : 3000 | AP1 | GRAVIT | Y OF DIE | BEL FUEL | 33.9 A | 100 T | | |--|--|--|---
---|---|---|---|--| | RUN NUMBER
NOM WATER PC | | 114 | 120 | 115.
S | 116
10 | 117
15 | 118 | 119
25 | | ENGINE SPEED
OBS TORQUE | RPH
LB-FT | 800
592 | 800
592 | 800
592 | 800
592 | 800
592 | 800
542 | 800
392 | | BAR PRESS DRY BULB WET BULR REL HUMIDITY CORR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 22
88
77
61
92 4
25 6 | 29 14
99
78
39
93 8
26 0 | 29 22
89
77
58
92 6
25 6 | 29 21
91
78
56
92 9
25 7 | 29 21
78
78
93 1
25 8 | 29 19
78
47
93 5
25 9 | 29 18
99
78
19
93 9
26 0 | | FUEL FLOW
WATER FLOW
CALC VOL X
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/HIN
PCT
LB/BHP-HR
LB/MIN
LB/HIN | 42 95
0 0
0 0
4650
31 0
30 9 | 43 25
0 0
4612
30 9
30 6 | 43 18
17 3
4 3
4665
30 8
30 9 | 43 69
46 5
10 5
4702
30 4
30 8 | 43 80
61 4
13 4
4704
36 4
30 7 | 44 10
94 0
19 1
4715
30 2
30 6 | 44.81
124.5
23.5
4773
30.5 | | STOICH F/A
MEAS F/A
LALC F/A
Z DIFF | PCI | 0689
0116
0101
-12 64 | 0689
0117
0100
-14 39 | 0689
0117
0102
-13 02 | 0689
0119
0102
-13 97 | 0689
0119
.0103
-14.05 | 0689
0121
0103
-14 35 | 0689
0123
0104
-15 23 | | COOLANT 10UT COOLANT 10UT COOLANT 10UT FUEL SINF 1 FUEL COOLER (REF FUEL COOLER (REF 11N AKE AIR AK | DED CONTROL OF THE FEE FEE FEE FEE FEE FEE FEE FEE FEE F | 102355147
102355147
10211187
10211188
10211188
10211188
10211188
10211188
10211188
10211188
10211188
10211188
10211188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
1021188
102188
102188
102188
102188
102188
102188
10218
10218
10218
10218
10218
10218
1 | 163
127
187
187
164
1103
1107
1105
1107
1116
1116
1116
1116
1116
1116
1116 | 174
1813
1165
1165
1164
95
95
1165
1164
95
1165
1164
1164
1165
1164
1165
1164
1165
1164
1165
1164
1165
1165 | 183
189
200
108
167,
1107
107
107
107
108
109
108
108
108
108
108
108
108
108
108
108 | 173.
184.
184.
163.
164.
164.
164.
167.
167.
167.
167.
167.
167.
167.
167 | 1810655647
1021024
1021104
1104
1104
1104
1104
110 |
102724
102724
102721
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
10271
102 | | TURB IN (RR) TURB IN (LF) TURB IN (LF) TURB IN (LR) FUEL PRESS. EMULSION PRESS FUEL SUPPLY WATER PRESS. | | 00570808870845570 3 | 005007389880065660 2
75 10 1 2200011119030 | 225 0 1 22000 1 1 1 1 8 8 3 0 0 4 3 1 8 8 3 0 0 1 1 1 1 1 8 8 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 005887788770045570 3 | 00580238888808655570 3 | 0058845888880045560 3 | 0057073888880075560 3 | | HYDROCARBONS CARBON MONOXID NITRIC DXIDE NITRICEN OXIDE CARBON DIOXIDE UXYGEN PARTICULATE | PPMC
EPPM
PPM
PPM
PCT
PCT
MG/SCF | 114
108
405
446
16
16
10 | 376
108
428
469
201
16.7 | 4856
1859
1859
161
161 | 532
172
145
103
15
15
15
3 | 463
193
376
453
18
18
2 | 484
2328
3528
111
112 | 393
494
236
292
171 | | HC MASS
CO MASS
NOX HASS
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 386
199
1588
4 30
2 21
17 61 | 356
202
1541
3 95
2 24
17 09 | 455
1572
1572
1572
1572
179 | 500
520
1492
5 55
16 55 | 436
359
1685
4 83
3 98
18 70 | 455
466
1474
5 05
5 18
16 35 | 373
750
1101
4 14
8 32
12 22 | TABLE C-37. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1000 RPM | DYNAHUHETER CO | NSTANT : 3000 . | API | GRAVITY | OF DIES | SEL FUEL: | 33.9 A | 1 60F | | |---|---|---|--|---|---|--|---|---| | RUN NUMBER
NON. WATER PCT | | 107. | 113.
0. | 108 | 109 | 110 | 20 | 112 | | ENGINE SPEED
OBS. TURQUE | RPM
LB-FT | 1000
877 | 1000 | 1000
877 | 1000
877 | 1000
877 | 1000
877 | 1006
877 | | BAR PRESS
DRY BULD
WET BULL
REL HUMIDITY
CORR BHP
CORR BHEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 23
87 77 6
172 0
38 1 | 29.12
100.
77.
35.
174.4
38.6 | 29 22
92
77
51
171 8
38 0 | 29 21
93
77
49
172 0
30 1 | 29.18
95
78
47
172.7
38.3 | 29,16
95,
77,
44,1
174,1
38,6 | 29 14
98
76
173 3
38 4 | | FUEL FLOW
WATER FLOW
CALC. VOL. %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 73.26
0.0
0.0
4259
40.3
40.1 | 73.38
0 0
8.0
4207
38 7
39 5 | 74.14
32.3
4.6
4316
40.3
39.6 | 73 65
66 4
9 1
4283
40 2
39 6 | 74.50
109.5
14.0
4314
39.5 | 74.53
155.9
18.6
4281
37.0
39.2 | 74 01
211 7
24 1
4270
39 3
39 4 | | STOICH. F/A
MEAS. F/A
CALC. F/A
% DIFF. | PCT | .0689
.0152
.0140
-7.72 | .0689
.0156
.0138
-11.52 | 0689
0155
0139
-9 95 | 0689
.0154
.0138
-10.17 | 0689
0157
0139
-11.11 | 0689
0159
0139
-12.43 | 0689
0157
0139
-11 43 | | HP AIR (RE) HP AIR (RE) HP AIR (RE) EXHER INLET CELLAUST 1R EXHAUST 1R EXHAUST 3R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5R EXHAUST 5L EXHAUST 3L EXHAUST 3L EXHAUST 5L EXHAUST 5L | ###################################### | 30597.26992440063602183180597.269924400636021831835590537.111111449928444435590537. | 11111111111111111111111111111111111111 | 7899024800999712065120653538749321111144 99848733174932 | 310094958195629373801597278912
1001094958195629373801597278912
110114996473921108013
44744554555 | 120855720227840565046577
7800855720227840565046577
110082111081112759504444757846602 | 173
120
1257
107
107
107
107
107
107
107
107
107
10 | 7100627402110241102411024794102947940808 | | OIL PRESSURE FUEL SPILL BUOST (RF) BUOST (RF) BUOST (LF) ALR BUOY BUOY BUOY BUOY BUOY BUOY BUOY BUOY | PROPERTY OF THE T | 431118111114730030W750030 | ###################################### | 431101011114400330000000000000000000000 | 760801845110000918 0
331101011144000330136050 | 800901854110809915
3311011111440897009915
80390 | Bookers Jideooke Jio o
Philosophysia o
Philosophysia o
No h | 9000011550000099800 7
75170010111111111111111111111111111111 | | HYDROCARBONS CARBON MONOXID NITRIC UXIDE NITROGEN OXIDE CARBON DIOXIDE UXYGEN PARTICULATE | PPMC
EPPM
PPM
PPM
PCT
PCT
MG/SCF | 422
80
549
576
2 9
15 0 | 507
94
578
619
2 9
15 8 | 652
119
527
563
2 9
16 2 | 720
136
491
543
2
15
15
15 | 610
145
500
524
16.0 | 588
145
481
530
15.5
15.3 | 546.
164.
444.
492.
2.9
16.3 | | HC MASS
CO MASS
NUX MASS
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 488
180
2513
2 92
1 08
15 05 | 594
217
2418
3.56
1.30
14.48 | 767
275
2431
4.59
1.65
14.56 | 848
314
2390
5 08
1 88
14 25 | 723
335
2526
4 33
25 13 | 697
336
2445
4 17
2 81
14 64 | 644
378
223
3 86
2 26
13 31 | TABLE C-38. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1200 $\ensuremath{\text{RPM}}$ | DYNAMOMETER CO | NSTANT : 3000 | . AP: | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 A | T 60F | | |
--|--|--|---|---|---|---|--|---|--| | RUN NUMBER
NOM. WATER PCT | | 121.
0. | 127
0 | 144.
0. | 150.
0. | 122 | 145.
5. | 123.
10. | 146
10 | | ENGINE SPEED
OBS. TORQUE | RPM
LB-FT | 1200 .
1231 . | 1200
1231 | 1200.
1231 | 1200
1231 | 1200
1231 | 1200
1231 | 1200 | 1200
1231 | | BAR PRESS. DRY BULB MEI BULK REL HUMIDITY CORR BHP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29.20
89.
77.
58.
289.4
53.4 | 29.11
101
78.
36.
294.2
54.3 | 29.11
96.
74.
35.
298.8
53.7 | 28.96
102.
73.
24.6
54.4 | 29.19
91.
77.
53.
290.4
53.6 | 29.06
108
76
33
293.2
54.1 | 29 19
92
78
54
291 1
53 7 | 29.84
102.
77.
32.
294.7
54.4 | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT:
LB/BHP-HR
LB/MIN
LB/MIN | 114.65
0 0
0 0
3962
495
51.8 | 116 46
0 0
3959
50 9
52 0 | 115.06
0.0
0.0
395.2
50.2 | 116.46
0.0
0.0
3953
49.5
51.6 | 115.76
53.1
4.8
3987
49.9
51.7 | 116.22
53.1
4.8
3964
49.4
52.1 | 116 18
109 5
3992
50 6
52 0 | 116.69
112.5
9.6
.960
50.7
51.6 | | STOICH F/A
MEAS F/A
CALC F/A
Z DIFF | PCT | 8689
0189
0175
-7 22 | 8689
8189
8175
-7.44 | 0689
0188
0173
-7 55 | .0689
.0192
.0173
-9.97 | 0689
0190
0176
-7.28 | 0689
0191
0175
-8.22 | 0689
0189
0176
-6 52 | 0689
0190
0177
-7.07 | | CELL AIR 1
EXHAUST 1
EXHAUST 1
EXHAUST 3
EXHAUST 5
EXHAUST 5
EXHAUST 1
EXHAUST 1
EXHAUST 1
EXHAUST 3
EXHAUST 3
EXHAUST 3
EXHAUST 5
EXHAUST 5
EXHAUST 5
EXHAUST 5
EXHAUST 5
EXHAUST 5
EXHAUST 5
EXHAUST 6
EXHAUST 6
EXHAUST 6 | DODD DODD DE EFFERENCE DE LE FERENCE F | 75400663255539491884276730340
78013700999223268995553555666640
1121115 5555555666666 | 7.79.5.2.14.10.11.11.11.11.11.11.11.11.11.11.11.11. | 8644017719322222468663727992266667 | 89121294810210967838857122
112113084811124197170967854851552
15555555666667 | 2142110924766661131111111111111111111111111111111 | 976181809652138102342060775765
1111111111111111151155555566656666 | 1784521301156099889939975999467467992311111111111111111111111111111111111 | 000-000-000-000-000-000-000-000-000-00 | | OIL PRESSURE FUEL SPILL BUDST (RF) BUDST (RF) BUDST (LF) BUDST (LF) BUDST (LF) AIR BUX | PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI
PSI | 70011110477600111718000 | 500811257090003345 0 | BBBRUNUBANABBBRANANABBRB | 900 300 00 00 00 00 00 00 00 00 00 00 00 | 44 NATIONAL AND | 44 | 80033342568700035470 8 | BATTON TO A | | HYDROCARBONS CARBON HONOXID NITRIC OXIDE NITROGEN OXIDE CARBON DIOXIDE OXYGEN PARTICULATE | PPMC
EPPM
PPH
SPPM
PCI
PCI
MG/SCF | 513
83
674
692
3 7
15 8 | 510
83
681
714
3.7
16.0 | 560
91
720
752
3
15 | 522
84
756
775
3
15 8 | 791
99
648
676
3
152 | 774
88
727
764
3 6
14 8 | 768
98
644
685
3 7
15 5 | 758
94
763
796
15
15
15 | | HC MASS
CO MASS
NUX MASS
BSHC
HSCO
BSNO | GM-HR
GH-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 716
3673
13 86 | 755
3542
2 60
12 60 | 822
3577
2 92
12 72 | 777
351
321
12 51 | 1154
3434
12 42 | 1139
3754
4 05
13 35 | 1123 | 1107
4010
4010
14 26 | TABLE C-39. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1200 RPM, 15, 20, AND 25% WATER | DYNAMUHETER CONSTANT: 3000
H/C RATIO: 1.82 | . AP | 1 GRAVIT | Y OF DIE | SEL FULL | 33.9 A | 1 60F |
--|--|--|--|--|--|--| | RUN NUMBER
NOM. WATER PCT. | 124.
15. | 147.
15. | 125
20 | 148
20 | 126 | 149
25 | | ENGINE SPEED RPM
OBS. TORQUE LB-FT | 1200
1231 | 1200
1231 | 1200
1231 | 1200 | 1200
1231 | 1200
1231 | | BAR PRESS. IN-HG DRY BULB DEG F WHIT BULB DEG F REL HUMIDITY PCT CORR BHP HP CORR BHEP PSI | 29.17
92.
78.
291.6
53.8 | 29.02
103
777
31.2
295.5 | 29.17
92.
80.
59.
293.6
54.2 | 29.00
105.
75.
24.7
294.7 | 29 14
97
79
45
293 7
54 2 | 28.79
105.
75.
24.
295.2 | | FUEL FLOW LB/HR WATER FLOW CC/MIN CALC VOL X PCJ BBFC ABFC LB/HP-HR AIR FLOW L LB/HIN AIR FLOW R LB/HIN | 117 12
180 1
1415
4016
50 4 | 116.69
180.1
14.6
3954
50.3 | 117.34
252.3
19.2
.3994
48.4
50.5 | 117.46
252.3
1986
50.4
51.2 | 118 13
341 /
24 2
4023
49 6 | 117.72
341.7
24.3
3987
49.4
51.5 | | STOICH F/A
HEAS F/A
CALC: F/A
Z DIFF: PCT | 9689
0191
0177
-7 58 | .0689
.0191
.0175
-8.56 | .0689
.0198
.0178
-9.78 | .0689
.0193
.0176
-8.73 | .0689
.0194
.0180
-7.59 | .0689
.0194
.0178
-8.56 | | LOOLANT IN DEG F COOLANT OUT DEG F COOLANT OUT DEG F COOLANT OUT DEG F FUEL SUMPP FUEL IN DEG F FUEL RETURN DEG F FUEL SUPPLY | 174
184
1107
1109
1109
1109
1109
1109
1109
1109 | 89-2-17-382-6-0-8-8-3-4-3-6-3-4-18-6-7-5-38-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- | 76818307043115609963945130092155 | 6829:53637:11999:3037:52446530008601111111111111511555555566666666666 | 904954871135230552045494245140117
18009000000334330055355329176017
1111111111111151155555556566666 | 5826323480900724086873314044287
6700200101044444308534732741181
1121111111111111111111111111111111 | | OIL PRESSURE PSI FUEL SPILL PSI MOUST (RF) PSI BOOST INLET VAC (RF)IN-H20 (LF)IN-H20 INLET VAC (LF)IN-H20 INLET IN (RF) IN-HG IUMB IN (RF) IN-HG IUMB IN (LF) | 00047.45.687.00.757.00.0
2.500.10.00.00.00.00.00.00.00.00.00.00.00.0 | 44 NOT TO THE RESIDENCE OF THE PROPERTY | 15001010150055555500 5
1400101010105005555500 5
20 5 | 2442N-124 NN555005555550 7 0 442N-124 NN555000555550 7 0 1 4 4 4 2 N 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 | 00061-10569700-101500000000000000000000000000000000 | 34444141800046666015151515000 0 5 | | HYDROCARBONS PPHC
CARBON HONOXIDEPPH
NITROCEN OXIDE PPH
NITROGEN OXIDESPPH
CARBON DIOXIDE PCT
DXYEN DIOXIDE PCT
PARTICULATE MG/SCF | 785
96
969
706
14 B
1 7 | 686
748
789
3 6
15 0 | 789
94
644
677
3 7
15 4
1 8 | 6/0
89
701
737
3 7
16 0 | 685
623
658
3.7
15.0 | 685
84
654
694
3 7
15 3 | | HC MASS GM-HR CO MASS GM-HR NUX MASS GM-HR BSHC GM/BHP-HR BSHO GM/BHP-HR BSHO GM/BHP-HR | 1154
274
4148
4 11
97 | 1018
263
4127
3 62
14 68 | 1155
268
4364
4 11
95
15 52 | 992
258
3759
3 53
13 37 | 1002
258
4110
3.56
14.62 | 889
241
3674
3 16
86
1 3 06 | TABLE C-40. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, 1400 $\ensuremath{\text{RPM}}$ | DYNAHONEJER CON | STANT : 3000 | . AP | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 A | 1 60F | | |--|--
---|--|---|--|--|---|---| | RUN NUMBER
Nom. Water PCT. | | 128.
0 | 134.
0. | 129 .
5 . | 130 | 131
15 | 132
20 | 133
25 | | ENGINE SPEED
OBS TORQUE | RPM
LB-FT | 1400.
1654. | 1400
1654 | 1400.
1654. | 1400
1654 | 1400
1654 | 1400 | 1400
1654 | | BAR PRESS DRY BULB WET BULB REL HUMIDITY CORR BMPP CORR BMEP | IN-HG
DEG F
DEG F
PCT
HP
PSI | 29 22
87
77
64
453 3
71 7 | 29 14
102
76
30
459 3
72 7 | 29 21
89
77
58
453 7
71 8 | 29 21
94
78
49
457 5
72 4 | 29 20
94
78
49
458 8
72 6 | 29.19
94.
78.
49.0
72.6 | 29 17
100
77
35
458 7
72 6 | | FUEL FLOW
WATER FLOW
CALC: VOL: %
BSFC
AIR FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 178.17
0.0
0.0
3931
63.9
68.0 | 178.39
0.0
0.0
.3884
64.6
66.5 | 178.39
81.2
4.8
3932
65.5
68.3 | 177.76
173.4
97.3886
62.3
67.9 | 177 95
288 5
15 2
3879
61 9 | 178.22
391.0
19.5
3883
61.9
65.9 | 179 37
517 5
24 2
3911
63 3
66 0 | | STOICH. F/A
MEAS. F/A
CALC. F/A
Z DIFF. | PCT | 0689
0225
0170
-24 56
| 0689
0227
0171
-24 57 | 0689
0222
0172
-22 53 | 0689
0228
0174
-23 35 | 0689
0232
0176
-24 19 | .0689
.0232
.0175
-24.53 | 0689
0231
0176
-24 10 | | | | 169
1109
11215
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
11315
113 | 1789 4
1189 4
1189 4
1189 4
1189 1
1189 1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 9-162150225409144
111971225409144
114971569977448
997366666667777448 | 1887
1887
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
11142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
1142
114 | 100
110
110
110
110
110
110
110
110
110 | 1789 1189 80 1118 1118 1118 1118 1118 1118 | 13107605246507034027646519363707
121111111111111165116866651139707 | | OIL PRESSURE FUELTS (RF) BOOST (RF) BOOST (LR) AR BOOST (LR) AR BOOST (LR) AR BOOST (LR) FUELT VAC (RF) INLET VAC (LF) INLET VAC (RF) INLET VAC (LF) (RF) V | PAPA PAPA PAPA PAPA PAPA PAPA PAPA PAP | 10971-1834[R]:901-0000 1 0 07343454488000999990030 20 42 | 808070********************************* | N671, N444448800099999000 7 6 6 7 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0080807377454488000988880000 4954 | 007018243220098880 7
053323588440088810000 7 | 005018813550084570 6
05535034448800088880000 8
54 | 006440000074700097700 5
9577507544000000000000005
440000000000000 | | HYDROCARBONS
CAMBON MONOXIDE
NITRIC OXIDE
NITRICEN OXIDES
CAMBON DIOXIDE
UXYGEN
PARTICULATE | | 420
141
683
691
15 4
15 5 | 497
136
764
778
3 6
15 7 | 646
116
676
709
3.6
14.6 | 549.
96.
689.
706.
3.6
15.6 | 684
76
725
744
3 7
15 5 | 682
67
786
737
3 7
15 4 | 631
674
678
3 7
14 8 | | HC Mass
CO Mass
NUX Mass
BSHC
BSCO
BSNO | GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 977
648
5940
2 22
1 45
13 47 | 1147
613
5776
2.60
1.39
13.10 | 1483.
518.
6180.
3.36
1.18
13.83 | 1466
422
6055
3 32
96
13 73 | 1536
334
6640
3 48
76
15 06 | 1539
293
6906
3.49
15.66 | 1437
245
6395
3 26
14 50 | TABLE C-41. PERFORMANCE AND EMISSION TEST RESULTS, DETROIT DIESEL ENGINE, $1600\ \text{RPM}$ | DYNAMUMETER CO | NSTANT 3000 . | AP | I GRAVIT | Y OF DIE | SEL FUEL | : 33.9 A | 1 60F | |
--|---|--|--|---|---|--|--|---| | RUN NUMBER
NOM. WATER PCT | | 135
0. | 141 | 136 .
S | 137 | 130.
15. | 139
20 | 148 | | FNGINE SPEED
OBS. TURQUE | RPM
LB-FT | 1600.
2143 | 1600
2143 | 1600
2143 | 1600
2143 | 1600
2143 | 1600.
2143 | 1600
2143 | | BAR PRESS DRY BULB WHI BULB REL HUMIDITY COKR BHP CORR BMEP | IN-HG
DEG F
PCT
HP
PSI | 29.19
88.
78.
64.
672.5
93.1 | 29 08
106
77
27
686 3
95 0 | 29 18
90
78
59
673 9
93 3 | 29, 17
93,
78,
51,
675, 9 | 29 17
93
75
43
673 8
93 3 | 29 15
78
39
677 3
93 8 | 29 12
97
77
41
681 0
94 3 | | FUEL FLOW
WATER FLOW
CALC. VOL %
BSFC
Alk FLOW L
AIR FLOW R | LB/HR
CC/MIN
PCT
LB/BHP-HR
LB/MIN
LB/MIN | 262 97
0 0
0 0
3911
84 5
87 3 | 263 45
0 0
0 0
3838
80 9
87 9 | 263 16
120 0
4 8
3905
83 8
89 5 | 262 68
248 7
9 5
3886
81 3
88 9 | 262 77
401.5
14.4
3900
81.3
88.4 | 264 32
570 5
19 2
3902
82 3
88 1 | 262 97
661 5
21 7
3862
81 2 | | STOICH. F/A
MEAS. F/A
CALC. F/A
% DIFF. | РСТ | 0609
0255
0237
-7 27 | 0689
0260
0240
-7 73 | 0689
0253
0236
-6 61 | 0689
0257
0237
-7.67 | 0689
0258
0240
-7 12 | 0689
0259
0241
-6.93 | 0689
0260
0241
-7 43 | | COOLANT IN COOLANT OUT OUT OUT OUT OUT OUT OUT OUT OUT OU | ###################################### | 181049993434647899798788888888888888888888888888888 |
174.6.6.7.8
1186.6.7.8
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.9
110.0.0
110.0.0
110.0.0
110.0.0
110.0.0
110.0.0
110.0.0
110.0.0 | 11379145700887811477878787878991149798878115778988781157789887897977898888781157789888878115778988887811577887877789888878888888888 | 491548262091620825271196663416888888888888888888888888888888888 | 78444386
78444396
78444396
78444396
7845
7785
7785
7785
8848
887
888
888
888
888
888
888
888
88 | 784.6430939658624399888525558420
799888552558420
798888552558420 | 744631174198093637204521792081411111222271108945217920814 | | OIL PRESSURE FUEL SPILL NOOST (RF) BOOST (RF) BOUST (LF) BOUST (LF) AIR BOX AI | P 9961
P 9961
P 9961
P 9961
P 1200
P | 400513555190065460 5
4776679775200555559020
5476679775200555559020 | 889871547400030920 5
486657877330055459020
54 | 58666679773800054250 B | 54666679773290032020 B | 008030026180020800 > 57676767977320055450017 | 5466669?7320030907 0
54766669?7320030907 0 | 546656977320054450020
54656977320054450020 | | HYDROCARBONS CARBON HONOXID NITRIC DXIDE NITRIC DXIDE CARBON DIOXIDE OXYGEN PARTICULATE | PPMC
EPPM
SPPM
SPPM
PCT
PCT
MG/SCF | 588
546
927
927
13 5 | 476
622
9536
9536
937
13.3 | 686
397
919
937
4 9
13 3 | 711
319
942
53 8
13 8 | 758
254
921
941
5 0
13 4 | 746
179
900
915
13.6 | 688
165
927
938
12.9 | | HC MASS
CD MASS
NUX MASS
BSHC
BSCO
BSCO | GM-HR
GM-HR
GM-HR
GM-HR
GM/BHP-HR
GM/BHP-HR
GM/BHP-HR | 1459
2605
8439
2 25
3 99
12 93 | 1165
2930
7381
1 79
4 49
11 31 | 1706
1897
8707
2.61
2.91
13.34 | 1756
1513
8800
2 69
2 32
13 48 | 1855
1194
8556
2.84
1.83
13.11 | 1833
845
8861
2 81
1 29
13 57 | 1681
775
9272
2 58
1 19
14 20 | ## APPENDIX D ## REPORT OF NEW TECHNOLOGY This study documents the unique application of water-in-fuel emulsions to large (900hp to 1200hp) diesel engines. A laboratory system was developed to mix and meter the emulsions to the engine (p. 6 to 11). This system performed well and allowed a determination of the emulsion effects on diesel engine performance. ## **REFERENCES** - Storment, J. O., and C. W. Coon, "Single-Cylinder Diesel Engine Tests with Unstabilized Water-in-Fuel Emulsions," Report Nos. DOT-TSC-USCG-79-4/ CG-D-13-78, Final Report, U.S. Department of Transportation (August 1978). - 2. Spadaccini, L. J., and R. Pelmas, "Evaluation of Oil/Water Emulsions for Application in Gas and Turbine Engines," paper presented at Symposium on Evaporation-Combustion of Fuel Droplets (1976). - 3. Law, C. K., et al, "On the Vapor Pressure, Boiling Point, Burning Characteristics, and Fire Retardancy of Oil/Water Emulsions," Paper No. 79-44, 1979 Fall Meeting of the Western States Section of the Combustion Institute, Lawrence Berkeley Laboratories, Berkeley, CA (15-16 October 1979). - 4. Dryer, F. L., "Water Addition to Practical Combustion Systems—Concepts and Applications," Sixteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA (1977). - 5. Gollahalli, S. R., M. L. Rasmussen, and S. J. Moussavi, "Combustion of Drops and Sprays of Number 2 Diesel Oil and its Emulsions with Water and Methanol," Report No. DOT/RSPA/DPB-50/80/1, U.S. Department of Transportation, Research and Special Programs Administration, Office of University Research, Washington, DC (January 1980). - 6. Thompson, R. V., "Application of Emulsified Fuels to Diesel and Boiler Plant," Paper, Institute of Marine Engineers (December 1978). - 7. Cook, D. H., and C. K. Law, "A Preliminary Study of the Utilization of Water-in-Oil Emulsions in Diesel Engines," Paper, Combustion Science and Technology, Vol. 18 (1978). - 8. Murayama, T., et al, "Experimental Reduction of NO_X , Smoke, and BSFC in a Diesel Engine using Uniquely Produced Water (0-80%) to Fuel Emulsion," Society of Automotive Engineers (SAE) Paper 780224 (1978). - 9. Marshall, W. F., and R. D. Fleming, "Diesel Emissions as Related to Engine Variables and Fuel Characteristics," Society of Automotive Engineers (SAE) Paper 710836 (1971). - 10. Walter, R. A., "The Emissions and Fuel Economy of a Detroit Diesel 6-71 Engine Burning a 10 Percent Water-in-Fuel Emulsion," Report No. CG-D-10-78, U.S. Department of Transportation, United States Coast Guard, Office of Research and Development (1978). - 11. Lawson, A., and A. J. Last, "Modified Fuels for Diesel Engines by Application of Unstabilized Emulsions," Society of Automotive Engineers (SAE) Paper 790925 (1979). ## REFERENCES (CONTINUED) - 12. Federal Register, 42FR174, P-45169. - 13. Society of Automotive Engineers, "Engine Test Code-Spark Ignition and Diesel," SAE Standard J816b, SAE Handbook (1978). - 14. Meriam Instrument Division, Scott and Fetger Co., "Installation and Operating Instructions; Meriam Laminar Flow Elements," (1975). - 15. American Society for Testing and Materials, <u>Petroleum Measurements Tables</u>, American Edition, ASTM (1952). - 16. Ostle, B., Statistics in Research, 2nd, Iowa State University Press, Ames, IA (1963). ☆U. S. GOVERNMENT PRINTING OFFICE: 1981--701-545--81